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A𝑘-biplex is an induced subgraph of a bipartite graphwhich requires every vertex on the one side disconnecting

at most 𝑘 vertices on the other side. Enumerating all maximal 𝑘-biplexes in a bipartite graph is a fundamental

operator in bipartite graph analysis and finds applications in various domains, including community detection,

online recommendation, and fraud detection in finance networks. The state-of-the-art solutions for maximal

𝑘-biplex enumeration suffer from efficiency issues as 𝑘 increases (𝑘 ≥ 2), with the time complexity of𝑂 (𝑚2
𝑛),

where 𝑛 (𝑚) denotes the number of vertices (edges) in the bipartite graph. To address this issue, we propose

two theoretically and practically efficient enumeration algorithms based on novel branching techniques.

Specifically, we first devise a new branching rule as a fundamental component. Building upon this, we then

develop a novel branch-and-bound enumeration algorithm to efficiently enumerate maximal 𝑘-biplexes. We

prove that our algorithm achieves a worst-case time complexity of 𝑂 (𝑚𝛼𝑛
𝑘
), where 𝛼𝑘 < 2, thus significantly

improving the time complexity compared to previous algorithms. To enhance the performance, we further

propose an improved enumeration algorithm based on a novel pivot-based branching rule. Theoretical analysis

reveals that our improved algorithm has a time complexity of 𝑂 (𝑚𝛽𝑛
𝑘
), where 𝛽𝑘 is strictly less than 𝛼𝑘 . In

addition, we also present several non-trivial optimization techniques, including graph reduction, upper-bounds

based pruning, and ordering-based optimization, to further improve the efficiency of our algorithms. Finally, we

conduct extensive experiments on 6 large real-world bipartite graphs to evaluate the efficiency and scalability

of the proposed solutions. The results demonstrate that our improved algorithm achieves up to 5 orders of

magnitude faster than the state-of-the-art solutions.
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1 INTRODUCTION
Many real-world networks, such as author-publication networks [26], user-item networks [40], and

biological networks [27], can be modeled as bipartite graphs, where the vertices are divided into two

independent sets, representing two different types of entities, while the edges signify associations or

connections between vertices belonging to the two sets. Mining cohesive subgraphs from a bipartite

graph has emerged as a crucial technique to enable valuable insights and predictions regarding

the relationships and structures within these networks. For example, in user-item networks, users

sharing similar preferences tend to interact with comparable sets of items, thereby frequently

forming dense subgraphs within the networks. The identification of these cohesive subgraphs

holds significant potential for facilitating personalized recommendations [21, 35]. Similarly, in

gene expression networks, each gene is correlated in a set of samples, and local patterns on gene

expression data often give rise to dense subgraphs. The identification of cohesive subgraphs from

these gene expression networks can contribute to discovering biological activities that are common

to a set of genes [19, 36].

The classical biclique model [10, 17, 18, 28, 32] is a widely-used approach to model cohesive

subgraphs in bipartite graphs, where each vertex of one side is connected to all vertices of the

other side. This model has demonstrated successful applications in various bipartite graph analysis

tasks, including community detection [7, 23, 25], biological network analysis [8, 39], and anomaly

detection [2, 6]. However, the strict requirement of pairwise connections between two sides of

vertices might be overly restrictive for cohesive subgraph mining, as disconnecting a few edges

within a subgraph could still indicate its cohesion [22, 38]. To remedy this issue, several relaxed

biclique models, such as 𝑘-biplex [38, 49] and quasi biclique [33, 42], have also been developed.

In this paper, we primarily focus on the 𝑘-biplex model [38], which is a classic and valuable

approximation of the biclique model and finds extensive applications across real-world scenarios,

such as community detection [16, 38] and fraud detection [48].

Given a bipartite graph𝐺 , a subgraph𝐻 is referred to as a maximal𝑘-biplex of𝐺 if (1) every vertex

on the one side disconnects at most 𝑘 vertices on the other side; and (2) there does not exist any

other subgraph of𝐺 that contains 𝐻 while still satisfying condition (1). To enumerate all maximal

𝑘-biplexes from a bipartite graph, several advanced approaches have been developed in recent years

[16, 38, 48, 49]. Among them, the state-of-the-art is a pivot-based enumeration algorithm [16].

Such an approach, however, still suffers from the following issues. First, its practical performance

is not sufficiently efficient, which often requires several hours to process medium-size bipartite

graphs (as shown in [16]). Moreover, as 𝑘 increases (𝑘 ≥ 2), the performance of this approach

can be quickly reduced even when handling medium-size graphs. Second, the worst-case time

complexity of such an approach is 𝑂 (𝑚2
𝑛) [16], which is the same as that of the straightforward

brute-force enumeration algorithm. Furthermore, as discussed in [16], it is difficult to achieve a

tighter time complexity using their pivot-based enumeration technique. Therefore, developing both

theoretical and practical efficient solutions for enumerating all maximal 𝑘-biplexes on bipartite

graphs remains a very challenging problem.

Contributions. To address the aforementioned challenges, we propose two novel maximal 𝑘-biplex

enumeration algorithms based on a carefully-designed branching strategy and a pivoting technique.

The striking feature of our algorithms is that they not only offer much better practical performance

but also have improved worst-case time complexity guarantees (compared to the state-of-the-art

algorithm). In summary, the main contributions of our paper are as follows.

Novel enumeration algorithms. We propose two new algorithms for efficiently enumeratingmaximal

𝑘-biplexes on the bipartite graphs. Our first algorithm is based on a new branch-and-bound method

with a carefully-designed branching rule. We prove that this algorithm can achieve an improved
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Fig. 1. Running example: a bipartite graph 𝐺 .

worst-case time complexity of 𝑂 (𝑚𝛼𝑛
𝑘
), where 𝑛 and 𝑚 are the numbers of vertices and edges

of the bipartite graph, respectively, and 𝛼𝑘 is a positive real number strictly smaller than 2. To

enhance the efficiency, we also propose an improved enumeration algorithm that incorporates a

novel pivoting technique along with an improved branching rule. Interestingly, we prove that this

improved algorithm achieves an even tighter worst-case time complexity of 𝑂 (𝑚𝛽𝑛
𝑘
), where 𝛽𝑘 is

a positive real number strictly smaller than 𝛼𝑘 . Specifically, when 𝑘 = 0, 1, and 2, 𝛽𝑘 takes on the

values 1.414, 1.618, and 1.839, respectively, To the best of our knowledge, our algorithms are the

first algorithms that can break the 𝑂 (2𝑛) complexity for enumerating maximal 𝑘-biplexes, and our

improved algorithm represents the best solution to date in terms of the worst-case time complexity.

New optimization techniques. To further improve the efficiency of our algorithms, we also develop

several non-trivial optimization techniques, including graph reduction, upper-bounds based pruning,

and ordering-based optimization. Specifically, we prove that each edge in a maximal 𝑘-biplex with

the size of each side no less than 𝑞 is associated with a minimum of (𝑞−𝑘 −1) (𝑞−2𝑘 −1) butterflies,
where the butterfly refers to a 2 × 2 biclique. Based on this, we present a novel butterfly-based

reduction technique to significantly reduce the bipartite graphs without losing any 𝑘-biplex (with

the size of each side no less than 𝑞). Furthermore, we develop a new upper-bound technique as

well as a near-linear time upper-bound computation algorithm, enabling efficient pruning the

unnecessary branches in the enumeration process. In addition, we present an ordering-based

optimization technique to further reduce the search space of our enumeration algorithms.

Extensive experimental evaluations. We construct extensive experiments to evaluate the efficiency

and scalability of the proposed algorithms on 6 large real-world bipartite graphs. The experimental

results demonstrate that our algorithms substantially outperform the state-of-the-art algorithm for

maximal 𝑘-biplex enumeration by up to 5 orders of magnitude across various parameter settings.

For example, On the Amazon dataset (with 3.7 million edges), our best algorithm takes less than

5 seconds to enumerate all maximal 3-biplexes with sizes no less than 15. In contrast, the state-

of-the-art algorithm failed to terminate within 24 hours under identical conditions. To ensure

reproducibility, we make the source code of this work available at https://github.com/dawhc/

MaximalBiPlex.

2 PROBLEM DEFINITION
Let 𝐺 = (𝐿, 𝑅, 𝐸) be an undirected and unweighted bipartite graph with two disjoint vertices sets 𝐿

and 𝑅 and an edge set 𝐸 ⊆ 𝐿 × 𝑅. We denote by 𝑛 = |𝐿 | + |𝑅 | and𝑚 = |𝐸 | the number of vertices

and edges of 𝐺 , respectively. For a vertex 𝑣 ∈ 𝐿 (resp. 𝑢 ∈ 𝑅), the set of neighbors of 𝑣 (resp. 𝑢)

in 𝐺 is denoted by 𝑁𝑣 (𝐺) = {𝑤 ∈ 𝑅 | (𝑣,𝑤) ∈ 𝐸} (resp. 𝑁𝑢 (𝐺) = {𝑤 ∈ 𝐿 | (𝑢,𝑤) ∈ 𝐸}). Then, the
degree of 𝑣 ∈ 𝐿 (resp. 𝑢 ∈ 𝑅) in 𝐺 is defined as 𝑑𝑣 (𝐺) = |𝑁𝑣 (𝐺) | (resp. 𝑑𝑢 (𝐺) = |𝑁𝑢 (𝐺) |). Given a

pair of vertex sets (𝐴, 𝐵) with 𝐴 ⊆ 𝐿 and 𝐵 ⊆ 𝑅, we define 𝐺 (𝐴, 𝐵) = (𝐴, 𝐵, 𝐸𝐴,𝐵) as a subgraph of

𝐺 induced by the vertex sets 𝐴 and 𝐵, where 𝐸𝐴,𝐵 = {(𝑣,𝑢) ∈ 𝐸 |𝑣 ∈ 𝐴,𝑢 ∈ 𝐵}. Below, we give the
definition of the 𝑘-biplex [38].

Definition 1 (𝑘-biplex). Given a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), a positive integer 𝑘 , and two vertex
sets 𝑆𝐿 ⊆ 𝐿 and 𝑆𝑅 ⊆ 𝑅, the subgraph 𝐺 (𝑆𝐿, 𝑆𝑅) is a 𝑘-biplex if every vertex 𝑣 ∈ 𝑆𝐿 has a degree no
less than |𝑆𝑅 | − 𝑘 and every vertex 𝑢 ∈ 𝑆𝑅 has a degree no less than |𝑆𝐿 | − 𝑘 .
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A 𝑘-biplex 𝐺 (𝑆𝐿, 𝑆𝑅) is said to be maximal in 𝐺 if no other 𝑘-biplex 𝐺 (𝑆 ′
𝐿
, 𝑆 ′

𝑅
) satisfies 𝑆𝐿 ⊆ 𝑆 ′

𝐿

and 𝑆𝑅 ⊆ 𝑆 ′
𝑅
. To simplify the presentation, we will refer to the sets of (𝑆𝐿, 𝑆𝑅) as a 𝑘-biplex if

𝐺 (𝑆𝐿, 𝑆𝑅) is a 𝑘-biplex in 𝐺 . Below, we give a notable property of the 𝑘-biplex.

Property 1 (Hereditary property [49]). The 𝑘-biplex meets the hereditary property for any positive
integer 𝑘 , i.e., given a 𝑘-biplex (𝐴, 𝐵) of𝐺 , (𝐴′, 𝐵′) is also a 𝑘-biplex of𝐺 for every𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵.

This nice property suggests that the communities in bipartite graphs detected by the 𝑘-biplex

are often robust, since the community structure cannot be destroyed even if some individuals are

removed. Furthermore, by setting 𝑘 = 0, the 𝑘-biplex model degenerates to the traditional biclique

model. As a result, 𝑘-biplex can also be applied to various real-world applications, similar to the

biclique. However, many maximal 𝑘-biplexes with small sizes may not have practical application

value since they can be too sparse and unsuitable for modeling real communities. For instance,

consider two edges (𝑢1, 𝑣1) and (𝑢2, 𝑣2) of a bipartite graph 𝐺 . If the distance between 𝑢1 (resp.

𝑣1) and 𝑢2 (resp. 𝑣2) is greater than 2, then the sets {𝑢1, 𝑢2} and {𝑣1, 𝑣2} form a maximal 1-biplex.

It is easy to verify that this maximal 1-biplex is not a cohesive subgraph of 𝐺 and has limited

practical utility. Thus, it is more meaningful to mine relatively-large maximal 𝑘-biplexes. In addition,

relative-large 𝑘-biplexes are often very cohesive as indicated by the following lemma.

Lemma 1 ([16]). Given a 𝑘-biplex𝐺 (𝐴, 𝐵) of𝐺 , the diameter of𝐺 (𝐴, 𝐵) is at most 3 if |𝐴| ≥ 2𝑘 + 1
and |𝐵 | ≥ 2𝑘 + 1.
As shown in Lemma 1, any 𝑘-biplex (𝐴, 𝐵) of 𝐺 with |𝐴| ≥ 2𝑘 + 1 and |𝐵 | ≥ 2𝑘 + 1 must

be densely-connected, making it a more probable representation of communities in real-world

bipartite graphs. Therefore, this paper focuses mainly on enumerating relatively-large 𝑘-biplexes.

In the rest of this paper, if the context is clear, enumerating all 𝑘-biplexes means enumerating all

relatively-large 𝑘-biplexes. Below, we formally define our problems.

Problem definition. Given a bipartite graph 𝐺 and a threshold 𝑞 ≥ 2𝑘 + 1, the goal of this paper
is to enumerate all maximal 𝑘-biplexes in 𝐺 with the sizes of both sides no less than 𝑞.

2.1 Existing Solutions
The problem of enumerating all maximal 𝑘-biplexes of 𝐺 has been proven to be NP-hard [16, 46],

and several approaches have been proposed to address this problem [16, 38, 48, 49]. Below, we

provide a brief overview of these existing solutions.

Reverse search based algorithms. The algorithm, which was first introduced by [48], leverages

a reverse search framework [3, 12] that was originally proposed for enumerating all maximal

subgraphs with the hereditary property. In general, the algorithm operates by following three

primary steps. Firstly, the algorithm identifies a (random) single solution as its initial input. Secondly,

the algorithm makes use of a local search to identify the new local solutions (which may not be

maximal) from each almost-satisfying subgraph generated by the current solution. Here, a graph 𝐻

is considered to be an almost-satisfying subgraph if it is not a 𝑘-biplex but would become one upon

the removal of a single vertex. Lastly, the algorithm maximizes each local solution and iteratively

employs the newly-discovered solution to continue the local search operations.

A nice feature of this algorithm is its ability to achieve polynomial delay time complexity [48].

However, this algorithm may involve many unnecessary local search calculations that may produce

duplicate solutions and require the storage of every solution to avoid redundancy. In addition, when

using this algorithm to enumerate relatively-large maximal 𝑘-biplexes, it may still be necessary to

enumerate all maximal 𝑘-biplexes of an input graph since some relatively-large maximal 𝑘-biplexes

may only be identified in the almost-satisfying subgraph whose size is less than 𝑞 on both sides.

Consequently, this algorithm can be extremely inefficient when processing large real-world graphs.
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Set enumeration based algorithms. The fundamental algorithms, as introduced in [38, 49],

employ the set enumeration technique that iteratively examines each subset of the given candidate

sets to obtain all maximal 𝑘-biplexes. This enumeration process generates a prefix tree structure,

leading to these algorithms being commonly referred to as prefix tree-based algorithms.

Since the prefix tree based algorithms detect a large number of non-maximal 𝑘-biplexes, it is

also rather inefficient. To address this issue, Dai et al. [16] recently proposed a pivot-based set

enumeration algorithm. Specifically, given the candidate sets 𝐶𝐿 ⊆ 𝐿 and 𝐶𝑅 ⊆ 𝑅 to expand the

current 𝑘-biplex (𝐴, 𝐵), the authors found that the remaining maximal 𝑘-biplexes to be detected

can be identified by expanding only a portion of vertices in𝐶𝐿 and𝐶𝑅 . This is achieved by selecting

a pivot vertex 𝑣 ∈ 𝐶𝐿 (resp. 𝑣 ∈ 𝐶𝑅) to expand the current (𝐴, 𝐵), and then expanding the 𝑘-biplex

only using the vertices in {𝑤 ∈ 𝐶𝐿 | (𝐵 \ 𝑁𝑣 (𝐺)) ⊊ 𝑁𝑤 (𝐺)} and 𝐶𝑅 \ 𝑁𝑣 (𝐺) (resp. 𝐶𝐿 \ 𝑁𝑣 (𝐺) and
{𝑤 ∈ 𝐶𝑅 | (𝐴 \ 𝑁𝑣 (𝐺)) ⊊ 𝑁𝑤 (𝐺)}). As a result, the pivoting technique can prune many redundant

branches, making it efficient in processing real-world graphs. To the best of our knowledge, this

pivot-based algorithm is the state-of-the-art approach to this problem.

Unfortunately, the worst-case time complexity of the pivot-based algorithm is 𝑂 (𝑚2
𝑛), which is

trivially equal to the brute-force enumeration algorithm. Moreover, when using this pivot-based

algorithm to enumerate relatively-large maximal 𝑘-biplexes (whose sizes of both sides are no less

than a threshold 𝑞), it can be very costly in processing large real-world graphs, since this pivoting

technique is ineffective in reducing the enumeration of unnecessary maximal 𝑘-biplexes of 𝐺 . For

instance, when setting 𝑘 = 3, the algorithm cannot complete computations within 24 hours even

when 𝑞 = 20 on most datasets (see Sec. 5). Therefore, there is an urgent need for an algorithm

that can address our problem both theoretically and practically. In the following sections, we will

develop novel algorithms with a better worst-case time complexity guarantee, followed by some

key optimization techniques to further improve the efficiency of our algorithms.

3 THE PROPOSED ALGORITHMS
In this section, we develop two new algorithms for efficiently enumerating maximal 𝑘-biplexes of

𝐺 . Notably, all proposed algorithms in this section have time complexities that can break the barrier

of 𝑂 (2𝑛). To our knowledge, the time complexity of our best algorithm is significantly lower than

that of all existing algorithms.

3.1 The Proposed Basic Algorithm
Our basic algorithm is inspired by the traditional branch-and-bound technique [11, 24], which selects

a specific vertex 𝑣 of 𝐺 to divide the current problem into two subproblems. The first subproblem

involves enumerating all maximal 𝑘-biplexes that contain 𝑣 , while the second subproblem involves

enumerating all maximal 𝑘-biplexes that exclude 𝑣 . For convenience, we refer to such a vertex 𝑣 as

the branching vertex. However, it is worth noting that the random selection of each vertex from 𝐺

as a branching vertex can lead to significant computational overhead. Especially in the worst-case

scenario, this method carries the risk of exhaustively enumerating all subsets of 𝐺 , potentially

generating a total of up to𝑂 (2𝑛) subbranches. To tackle this problem, we propose a new branching

rule for selecting branching vertices, whose key idea is as follows.

Key idea. Consider (𝑆𝐿, 𝑆𝑅) as a 𝑘-biplex, and let (𝐶𝐿,𝐶𝑅) be candidate sets containing all possible

vertices for expanding (𝑆𝐿, 𝑆𝑅). Specifically, for each 𝑣 in (𝐶𝐿,𝐶𝑅), adding 𝑣 to (𝑆𝐿, 𝑆𝑅) will generate
a larger 𝑘-biplex. It is evident that the smaller size of the candidate sets (𝐶𝐿,𝐶𝑅) generally leads to

a lower computational cost for enumerating the maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅). Based on

this observation, we note that selecting non-neighboring vertices of the vertex 𝑢 that is included in

𝑆𝐿 (or 𝑆𝑅) as branching vertices is remarkably helpful in reducing the size of (𝐶𝐿,𝐶𝑅). The rationale
behind this approach is that once the current 𝑘-biplex (𝑆𝐿, 𝑆𝑅) already includes 𝑘 non-neighbors
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Algorithm 1: The basic branch-and-bound algorithm

Input: Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), two parameters 𝑘 and 𝑞

Output: All relatively-large maximal 𝑘-biplexes of 𝐺

1 𝐵𝑟𝑎𝑛𝑐ℎ(∅, ∅, 𝐿, 𝑅, ∅, ∅);
2 Function: 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅)
3 if |𝑆𝐿 ∪𝐶𝐿 | < 𝑞 or |𝑆𝑅 ∪𝐶𝑅 | < 𝑞 then return;
4 if 𝐶𝐿 = ∅ and 𝐶𝑅 = ∅ then
5 if 𝑋𝐿 = ∅ and 𝑋𝑅 = ∅ then
6 if |𝑆𝐿 | ≥ 𝑞 and |𝑆𝑅 | ≥ 𝑞 then Output (𝑆𝐿, 𝑆𝑅);
7 return;

8 𝑣 ← argmax𝑣∈𝑆𝐿 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅); 𝑑𝐿 ← 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅);
9 𝑢 ← argmax𝑢∈𝑆𝑅 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿); 𝑑𝑅 ← 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿);

10 𝑤 ← −1;
11 if 𝑑𝐿 > 𝑘 then 𝑤 ← a vertex in 𝑁 𝑣 (𝐶𝑅);
12 else if 𝑑𝑅 > 𝑘 then𝑤 ← a vertex in 𝑁𝑢 (𝐶𝐿);
13 else
14 if (𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅) is a 𝑘-biplex then
15 Output (𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅) if it is the maximal;

16 return;

17 𝑤 ← the vertex in 𝐶𝐿 with smallest degree in 𝑆𝑅 ∪𝐶𝑅 ;

18 if 𝑑𝐿 > 𝑘 then 𝐵𝑟𝑎𝑛𝑐ℎ𝐵(𝑆𝑅,𝑤, 𝑆𝐿,𝐶𝑅,𝐶𝐿, 𝑋𝑅, 𝑋𝐿);
19 else 𝐵𝑟𝑎𝑛𝑐ℎ𝐵(𝑆𝐿,𝑤, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅);
20 Function: 𝐵𝑟𝑎𝑛𝑐ℎ𝐵(𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅)
21 (𝐶′

𝐿
,𝐶′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅);

22 (𝑋 ′
𝐿
, 𝑋 ′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝐿, 𝑣, 𝑆𝑅, 𝑋𝐿, 𝑋𝑅);

23 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿 ∪ {𝑣}, 𝑆𝑅,𝐶′𝐿,𝐶
′
𝑅
, 𝑋 ′

𝐿
, 𝑋 ′

𝑅
);

24 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿, 𝑆𝑅,𝐶𝐿 \ {𝑣},𝐶𝑅, 𝑋𝐿 ∪ {𝑣}, 𝑋𝑅);

of 𝑢, all the remaining non-neighbors of 𝑢 can be directly excluded from (𝐶𝐿,𝐶𝑅). Moreover, it is

easy to find that if the vertex 𝑢 ∈ 𝑆𝐿 (or 𝑢 ∈ 𝑆𝑅) has a smaller degree in (𝐶𝐿,𝐶𝑅), it will be more

beneficial to reduce the size of (𝐶𝐿,𝐶𝑅) by preferentially selecting non-neighbors of such vertex 𝑢

as the branching vertices. Motivated by this idea, the proposed branching rule is outlined as follows.

Proposed branching rule. Given a vertex 𝑣 ∈ 𝐿 and a set 𝐵 ⊆ 𝑅, we denote by 𝑁𝑣 (𝐵) (𝑁 𝑣 (𝐵) =
𝐵 \ 𝑁𝑣 (𝐵)) the set of neighbors (non-neighbors) of 𝑣 in 𝐵 and define 𝑑𝑣 (𝐵) (𝑑𝑣 (𝐵)) as |𝑁𝑣 (𝐵) |
(|𝑁 𝑣 (𝐵) |). Consider a 𝑘-biplex (𝑆𝐿, 𝑆𝑅) and the candidate sets (𝐶𝐿,𝐶𝑅) in a recursive call. We can

use the following rule for selecting the branching vertex. Note that we only consider the case where

the branching vertex is selected from 𝐶𝑅 , as the branching vertex from 𝐶𝐿 can be obtained by a

similar method.

• Finding a vertex 𝑣 ∈ 𝑆𝐿 with the smallest degree in 𝑆𝑅 ∪𝐶𝑅 , i.e., 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) ≤ 𝑑𝑣′ (𝑆𝑅 ∪𝐶𝑅) for
each 𝑣 ′ ∈ 𝑆𝐿 .
• If 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) > 𝑘 , we select a vertex 𝑢 in 𝑁 𝑣 (𝐶𝑅) as the branching vertex.

• If 𝑑𝑣 (𝑆𝑅 ∪ 𝐶𝑅) ≤ 𝑘 , we select a vertex 𝑢 in 𝐶𝑅 whose degree in 𝑆𝐿 ∪ 𝐶𝑅 is smallest as the

branching vertex, i.e., the vertex 𝑢 ∈ 𝐶𝑅 satisfies 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿) ≤ 𝑑𝑢′ (𝑆𝐿 ∪𝐶𝐿) for each 𝑢′ ∈ 𝐶𝑅 .
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Algorithm 2:𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅)
1 𝐶′

𝐿
← 𝐶𝐿 \ {𝑣}; 𝐶′𝑅 ← 𝐶𝑅 ∩ 𝑁𝑣 (𝐺);

2 foreach 𝑢 ∈ 𝐶𝑅 \ 𝑁𝑣 (𝐺) do
3 if 𝑑𝑢 (𝑆𝐿 ∪ {𝑣}) ≤ 𝑘 ∧ 𝑑𝑣 (𝑆𝑅 ∪ {𝑢}) ≤ 𝑘 then
4 𝐶′

𝑅
← 𝐶′

𝑅
∪ {𝑢};

5 foreach 𝑢 ∈ 𝑆𝑅 \ 𝑁𝑣 (𝐺) do
6 if 𝑑𝑢 (𝑆𝐿 ∪ {𝑣}) = 𝑘 then 𝐶′

𝐿
← 𝐶′

𝐿
∩ 𝑁𝑢 (𝐺);

7 return (𝐶′
𝐿
,𝐶′

𝑅
);

Implementation details. Armed with the above branching rule, we develop our basic algorithm,

as shown in Algorithm 1.

Algorithm 1 begins by invoking the 𝐵𝑟𝑎𝑛𝑐ℎ procedure, which utilizes the proposed branching

rule for the branch-and-bound approach, to enumerate the maximal 𝑘-biplexes on 𝐺 (line 1). This

𝐵𝑟𝑎𝑛𝑐ℎ procedure takes six parameters: 𝑆𝐿 , 𝑆𝑅 , 𝐶𝐿 , 𝐶𝑅 , 𝑋𝐿 , and 𝑋𝑅 . Here, (𝑆𝐿, 𝑆𝑅) refers to a 𝑘-

biplex, (𝐶𝐿,𝐶𝑅) are the candidate sets used to expand (𝑆𝐿, 𝑆𝑅), and (𝑋𝐿, 𝑋𝑅) are exclusion sets

containing all vertices in (𝐶𝐿,𝐶𝑅) that have been used to expand (𝑆𝐿, 𝑆𝑅). Before the branch-and-
bound procedure, the algorithm needs to select a vertex𝑤 from (𝐶𝐿,𝐶𝑅) as the branching vertex
following the proposed branching rule (lines 8-17). Specifically, it first obtains a vertex 𝑣 in 𝑆𝐿
(resp. 𝑢 in 𝑆𝑅) that has the smallest in 𝑆𝑅 ∪ 𝐶𝑅 (resp. 𝑆𝐿 ∪ 𝐶𝐿). If the number of non-neighbors

of 𝑣 in 𝑆𝑅 ∪ 𝐶𝑅 (or 𝑢 in 𝑆𝐿 ∪ 𝐶𝐿) is greater than 𝑘 , the procedure selects the branching vertex

𝑤 from 𝑁 𝑣 (𝐶𝑅) (or 𝑁𝑢 (𝐶𝑅)) (lines 8-12). Otherwise, the procedure selects 𝑤 ∈ 𝐶𝑅 that has the

smallest degree in 𝑆𝐿 ∪𝐶𝐿 as the branching vertex (line 17). It is noteworthy that if the current

search space corresponds to a maximal result, the ongoing recursive call will terminate and produce

(𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅) as the maximal solution (lines 14-16). Subsequently, the algorithm continues the

branch-and-bound procedure with vertex𝑤 (lines 18-19). When both 𝐶𝐿 and 𝐶𝑅 are the empty sets

(line 4), the recursive call terminates and outputs (𝑆𝐿, 𝑆𝑅) as a result, provided that 𝑋𝐿 and 𝑋𝑅 are

also the empty sets (lines 5-7).

When the branching vertex 𝑤 is added into (𝑆𝐿, 𝑆𝑅), the corresponding candidate sets (resp.

exclusion sets) need to be updated to ensure that all remaining vertices can also be used to expand

the new 𝑘-biplex (𝑆𝐿, 𝑆𝑅) ∪ {𝑤}. To achieve this, we present a procedure shown in Algorithm 2.

Specifically, if the vertex 𝑣 ∈ 𝐶𝐿 is added to 𝑆𝐿 , every vertex 𝑢 ∈ 𝐶𝑅 (resp. 𝑢 ∈ 𝑋𝑅) must satisfy that

either 𝑢 is the neighbor of 𝑣 , or 𝑑𝑣 (𝑆𝑅) < 𝑘 and 𝑢 has at most 𝑘 − 1 non-neighbors in 𝑆𝐿 (lines 1-4).

For each 𝑢 ∈ 𝐶𝐿 (resp. 𝑢 ∈ 𝑋𝐿), it must be the common neighbor of the vertices in 𝑁 𝑣 (𝑆𝑅) that
have exactly 𝑘 non-neighbors in 𝑆𝐿 ∪ {𝑣} (lines 5-6). By following these constraints, the remaining

vertices in candidate sets (resp. exclusion sets) can be used to expand the newly-created 𝑘-biplex.

The following example further illustrates the idea of the proposed Algorithm 1.

Example 1. Consider a graph𝐺 = (𝐿, 𝑅, 𝐸) depicted in Fig. 1, with 𝑘 = 1. We initialize the current 𝑘-
biplex as (∅, ∅) and its candidate sets as ({𝑢1, ..., 𝑢5}, {𝑣1, ..., 𝑣6}). Following the proposed branching rule,
we select 𝑢1 to expand (∅, ∅) due to its maximum number of non-neighbors in (𝐶𝐿,𝐶𝑅). Subsequently,
each non-neighbor of 𝑢1 becomes the branching vertex to further expand ({𝑢1}, ∅). Assuming 𝑣5 is
selected, we can exclude the vertices ({𝑢3}, {𝑣4, 𝑣6}) from the candidate sets to expand ({𝑢1}, {𝑣5}),
obtaining the result shown in Fig. 2(a). Similarly, we iteratively utilize the vertices 𝑢4 and 𝑣1 to expand
({𝑢1}, {𝑣5}). Notably, upon adding 𝑣1 to ({𝑢1, 𝑢4}, {𝑣5}), we can further eliminate the vertices 𝑢5 and
𝑣2 from the current candidate sets, as depicted in Fig. 2(b). By continuing our branching rule, we can
obtain a result ({𝑢1, 𝑢2, 𝑢4}, {𝑣1, 𝑣3, 𝑣5}).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 135. Publication date: June 2024.



135:8 Qiangqiang Dai et al.

u
1

u
2

u
3

u
4

v
1

u
5

v
2

v
3

v
4

v
5

v
6

(a) selecting non-neighbors of 𝑢1
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(b) selecting non-neighbors of 𝑢4

Fig. 2. An illustrative example for the proposed branching rule when 𝑘 = 1, where red vertices and green
vertices represent current 𝑘-biplexes, the yellow vertices are the branching vertices, and the gray vertices are
removed from (𝐶𝐿,𝐶𝑅).

We next analyze the time and space complexity of Algorithm 1, which are presented in Theo-

rem 3.1 and Theorem 3.2.

Theorem 3.1. The worst-case time complexity of Algorithm 1 is 𝑂 (𝑚𝛼𝑛
𝑘
), where 𝛼𝑘 < 2 is the

maximum real-root of equation 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0. When 𝑘 = 0, 1, and 2, we have 𝛼0 = 1.618,
𝛼1 = 1.839, and 𝛼2 = 1.928, respectively.

Proof. Denote by𝑇 (𝑛) the total number of leaves of the enumeration tree generated by 𝐵𝑟𝑎𝑛𝑐ℎ,

where 𝑛 = |𝐿 | + |𝑅 |. Then, the time complexity of Algorithm 1 is𝑂 (𝑚𝑇 (𝑛)), since each recursive call

of 𝐵𝑟𝑎𝑛𝑐ℎ takes at most𝑂 (𝑚) time to find the vertex that has the smallest degree and𝑂 (𝑛 +𝑘𝑑𝑚𝑎𝑥 )
time to update the corresponding candidate sets and exclusion sets, where 𝑑𝑚𝑎𝑥 is the larges degree

of vertices in 𝐺 . Based on the branch-and-bound technique, we can derive a base recurrence:

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 1). (1)

Let 𝑣 be the vertex in 𝑆𝐿 (or 𝑆𝑅) with the smallest 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) (or 𝑑𝑣 (𝑆𝐿 ∪𝐶𝐿)). Then, 𝑇 (𝑛) can
be tightened by the following analysis.

(1) If 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) > 𝑘 , a vertex𝑤 ∈ 𝑁 𝑣 (𝐶𝑅) is selected as the branching vertex. When𝑤 is added

to 𝑆𝑅 , we note that 𝑣 still has the smallest degree in 𝑆𝑅 ∪𝐶𝑅 among all vertices in 𝑆𝐿 if there is

no vertex removed from (𝐶𝐿,𝐶𝑅 \ {𝑤}). Then, another vertex in 𝑁 𝑣 (𝐶𝑅 \ {𝑤}) can be selected

as the branching vertex in the recursive call that enumerates maximal 𝑘-biplexes containing

(𝑆𝐿, 𝑆𝑅 ∪ {𝑤}). Thus, the recurrence of 𝑇 (𝑛) can also be:

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) +𝑇 (𝑛 − 2). (2)

This process can continue until 𝑘 vertices in 𝑁 𝑣 (𝐶𝑅) are added to 𝑆𝑅 . Assume that the vertices

in 𝑃 ⊆ 𝑁 𝑣 (𝑆𝑅) with |𝑃 | = 𝑘 are added into 𝑆𝑅 . The following recurrence can be derived:

𝑇 (𝑛) ≤
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +𝑇 (𝑛 − |𝑃 |). (3)

Based on the definition of 𝑘-biplex, when 𝑃 with |𝑃 | = 𝑘 is added into 𝑆𝑅 , all vertices in the

candidate sets of 𝐶𝑅 side must be the neighbors of 𝑣 . This means that the size of the candidate

sets of the recursive call that enumerates maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅 ∪ 𝑃) is at most

𝑛 − 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅). As a result, the branch 𝑇 (𝑛 − |𝑃 |) can be replaced with 𝑇 (𝑛 − 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅)).
Since 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) > 𝑘 , we then have:

𝑇 (𝑛) ≤
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +𝑇 (𝑛 − 𝑘 − 1). (4)

(2) If 𝑑𝑣 (𝑆𝑅 ∪ 𝐶𝑅) ≤ 𝑘 , a vertex 𝑤 ∈ 𝐶𝐿 with the smallest degree in 𝑆𝑅 ∪ 𝐶𝑅 is selected as the

branching vertex. We note that in the subbranch that enumerates maximal 𝑘-biplexes containing

(𝑆𝐿∪{𝑤}, 𝑆𝑅), the vertex𝑤 has the smallest degree in 𝑆𝑅∪𝐶𝑅 . If𝑑𝑤 (𝑆𝑅∪𝐶𝑅) > 𝑘 , the recurrence
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of this subbranch is equivalent to Eq. (4). Then, we have the following recurrence for the case

𝑑𝑤 (𝑆𝑅 ∪𝐶𝑅) > 𝑘 :

𝑇 (𝑛) ≤
𝑘+1∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +𝑇 (𝑛 − 𝑘 − 2). (5)

If 𝑑𝑤 (𝑆𝑅 ∪𝐶𝑅) ≤ 𝑘 , every vertex in (𝐶𝐿,𝐶𝑅) has at most 𝑘 non-neighbors in (𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅).
Thus, (𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅) is a 𝑘-biplex and such a recursive call can be terminated.

In summary, the worst-case recurrence is 𝑇 (𝑛) ≤ ∑𝑘+2
𝑖=1 𝑇 (𝑛 − 𝑖). Based on a theoretical result

[20] that for a given linear recurrence 𝑍 (𝑛) = ∑𝑗

𝑖=1
𝑍 (𝑛 − 𝑎𝑖 ), the size of 𝑍 (𝑛) is bounded by

𝑂 (𝛾𝑛), where 𝛾 is the maximum real-root of function 𝑥𝑛 −∑𝑗

𝑖=1
𝑥𝑛−𝑎𝑖 = 0. We then can derive that

the maximum size of 𝑇 (𝑛) is bounded by 𝑂 (𝛼𝑛
𝑘
), where 𝛼𝑘 is the maximum real-root of function

𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0. Thus, this completes the proof. □

Theorem 3.2. The worst-case space complexity of Algorithm 1 is 𝑂 (𝛿𝑛 +𝑚), where 𝛿 is the size of
maximum 𝑘-biplex of 𝐺 .

Proof. Initially, Algorithm 1 requires𝑂 (𝑚) space to store the graph𝐺 . Then, within the 𝐵𝑟𝑎𝑛𝑐ℎ

procedure, we note that only the subbranch that enumerates maximal 𝑘-biplexes containing a

vertex 𝑣 requires an additional 𝑂 (𝑛) space to store new candidate sets and exclusion sets. Thus,

𝐵𝑟𝑎𝑛𝑐ℎ takes at most 𝑂 (𝛿𝑛 +𝑚) space based on a depth-first search strategy and a restriction that

at most 𝛿 vertices can be moved to (𝑆𝐿, 𝑆𝑅). □

3.2 The Proposed Pivot-Based Algorithm
Although Algorithm 1 achieves lower time complexity compared to the state-of-the-art algorithm

[16], we observe that this algorithm still involves many unnecessary computations. The reason be-

hind it is that when a vertex 𝑣 is selected as a branching vertex, Algorithm 1 proceeds to select every

remaining vertex in the candidate sets as the branching vertex in the subbranches that enumerate

maximal 𝑘-biplexes excluding 𝑣 . Consequently, Algorithm 1 enumerates numerous non-maximal 𝑘-

biplexes, leading to inefficiency. For example, consider the bipartite graph𝐺 shown in Fig. 1. When

𝑘 = 1 and selecting 𝑢1 as the branching vertex, a maximal 1-biplex ({𝑢1, 𝑢2, 𝑢3, 𝑢4}, {𝑣1, 𝑣3, 𝑣4}) can
be identified. However, in the subsequent subbranch that enumerates maximal 𝑘-biplexes excluding

𝑢1, we note that the non-maximal 1-biplex ({𝑢2, 𝑢3, 𝑢4}, {𝑣1, 𝑣3, 𝑣4}) can also be enumerated by

selecting 𝑣1 as the branching vertex, thereby resulting in redundant enumerations.

To address the aforementioned issue, our focus lies in reducing the number of vertices selected

as the branching vertex in the candidate sets during each recursive call. To achieve our goal, we

develop a new pivoting technique that determines which vertices in the candidate sets require to

be selected as the branching vertex. The detailed rule is presented in the following theorem.

Theorem 3.3 (Pivoting rule in 𝐶). Given that ∄𝑢 ∈ 𝑆𝑅 with 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿) > 𝑘 in a recursive call,
and let a vertex 𝑣 ∈ 𝐶𝐿 be the pivot vertex. Then, all vertices in (𝐶𝐿 \ {𝑣},𝐶𝑅 ∩𝑁𝑣 (𝐺)) are unnecessary
for selecting as the branching vertices to enumerate maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅).

Proof. Denote by {𝑢1, 𝑢2, ..., 𝑢ℎ} = 𝐶𝑅 \𝑁𝑣 (𝐺), where ℎ = |𝐶𝑅 \𝑁𝑣 (𝐺) |. When selecting vertices

in ({𝑣}, {𝑢1, 𝑢2, ..., 𝑢ℎ}) as the branching vertices, we can derive that the original problem can be

divided into the following subproblems:

(1) the subproblem of enumerating all maximal 𝑘-biplexes that contain 𝑣 .

(2) the subproblems of enumerating all maximal𝑘-biplexes that contain𝑢𝑖 but exclude the vertices

in {𝑣} and {𝑢1, ..., 𝑢𝑖−1}, where 𝑖 ∈ [1, ℎ].
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(a) Pivoting rule in𝐶
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(b) Pivoting rule in 𝑋

Fig. 3. An illustrative example for the pivoting techniques when 𝑘 = 2, where green vertices represent current
𝑘-biplexes, the vertices with gray contours are included in exclusion sets, the red vertices denote the pivot
vertices, and the blue regions indicate the vertices that are unnecessary to be selected as the branching
vertices.

It is easy to verify that this pivoting technique ignores the problem of enumerating all maximal

𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅) in the bipartite subgraph induced by 𝑆𝐿∪𝐶𝐿 \{𝑣} and 𝑆𝑅∪𝐶𝑅 \𝑁𝑣 (𝐺).
Interestingly, we note that there are no maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅) in 𝐻 = 𝐺 (𝑆𝐿 ∪𝐶𝐿 \
{𝑣}, 𝑆𝑅 ∪𝐶𝑅 \ 𝑁𝑣 (𝐺)), since any maximal 𝑘-biplex in 𝐻 can be expanded by the pivot vertex 𝑣 . The

reasons are as follows. Suppose that (𝐴, 𝐵) is a maximal 𝑘-biplex containing (𝑆𝐿, 𝑆𝑅) in 𝐻 . When

we add 𝑣 into (𝐴, 𝐵), only vertices in 𝐵 \ 𝑁𝑣 (𝐺) can potentially break the condition of having at

most 𝑘 non-neighbors in 𝐴 ∪ {𝑣}. However, based on the conditions that (𝐵 \ 𝑁𝑣 (𝐺)) ⊆ 𝑆𝑅 and

there is no vertex 𝑢 in 𝑆𝑅 with 𝑑𝑢 (𝐴 ∪ {𝑣}) ≥ 𝑘 , we can derive that (𝐴 ∪ {𝑣}, 𝐵) is also a 𝑘-biplex

in 𝐺 . This implies that there is no need to enumerate all maximal containing (𝑆𝐿, 𝑆𝑅) in 𝐻 . Thus,

the theorem is established. □

We note that the pivot vertex can also be selected from the exclusion sets (𝑋𝐿, 𝑋𝑅). Neverthe-
less, the technique for this case is somewhat more intricate compared to the result described in

Theorem 3.3. Hence, we present the detailed theoretical result below.

Theorem 3.4 (Pivoting rule in 𝑋 ). Let 𝑣 ∈ 𝑋𝐿 be a pivot vertex. If ∄𝑢 ∈ 𝑆𝑅 with 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿) > 𝑘 ,
we have the following two cases:

(1) If ∄𝑢 ∈ 𝑆𝑅 with 𝑑𝑢 (𝑆𝐿 ∪ 𝐶𝐿 ∪ {𝑣}) > 𝑘 , it follows that all vertices in (𝐶𝐿,𝐶𝑅 ∩ 𝑁𝑣 (𝐺)) are
unnecessary to be selected as the branching vertices.

(2) Otherwise, all vertices in (𝐶𝐿 \𝑄,𝐶𝑅 ∩ 𝑁𝑣 (𝐺)) are unnecessary to be selected as the branching
vertices, where the set 𝑄 satisfies 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿 \𝑄) < 𝑘 for each vertex 𝑢 in 𝑁 𝑣 (𝑆𝑅).

Proof sketch. By Theorem 3.3, we observe that the algorithm only ignores the enumeration of

maximal 𝑘-biplexes that contain (𝑆𝐿, 𝑆𝑅) in subgraph 𝐻1 = 𝐺 (𝑆𝐿 ∪𝐶𝐿, 𝑆𝑅 ∪𝐶𝑅 ∩𝑁𝑣 (𝐺)) for case (1)
(or 𝐻2 = 𝐺 (𝑆𝐿 ∪𝐶𝐿 \𝑄, 𝑆𝑅 ∪𝐶𝑅 ∩ 𝑁𝑣 (𝐺)) for case (2)). When using a similar method as presented

in Theorem 3.3, we also derive that each maximal 𝑘-biplex (𝐴, 𝐵) containing (𝑆𝐿, 𝑆𝑅) in 𝐻1 for case

(1) (or 𝐻2 for case (2)) can also be expanded by the pivot vertex 𝑣 ∈ 𝑋𝐿 . Thus, the vertices in 𝐻1 (or

𝐻2) are unnecessary to be selected as the branching vertices.

The following example further illustrates the concepts presented in Theorem 3.3 and Theorem 3.4.

Example 2. Given a bipartite graph 𝐺 shown in Fig. 3(a), we assume that 𝑘 = 2. Let the current 𝑘-
biplex (𝑆𝐿, 𝑆𝑅) be ({𝑢1}, ∅), and the sets (𝐶𝐿,𝐶𝑅) = ({𝑢2, 𝑢3, 𝑢4, 𝑢5}, {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}) be the candidate
sets of (𝑆𝐿, 𝑆𝑅). Suppose that we select 𝑣4 as the pivot vertex for the recursive call that enumerates
maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅). By Theorem 3.3, all vertices in ({𝑢2, 𝑢3, 𝑢4, 𝑢5}, {𝑣1, 𝑣2, 𝑣3, 𝑣5})
are unnecessary selected as the branching vertices. Consequently, it is sufficient to expand ({𝑢1}, ∅)
with 𝑣4 in this recursive call. Similarly, in Fig. 3(b), let us consider the current 𝑘-biplex (𝑆𝐿, 𝑆𝑅) as
({𝑢3}, {𝑣4}) and exclusion sets (𝑋𝐿, 𝑋𝑅) as (∅, {𝑣3}). Based on Theorem 3.4, we can deduce that all
vertices in the candidate sets are unnecessary as the branching vertices when 𝑢3 ∈ 𝑋𝐿 is selected as the
pivot vertex. As a result, such a recursive call can be directly terminated.
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Pivot-based branching rule. Equipping with the results of Theorem 3.3 and Theorem 3.4, we

can derive a pivot-based branching rule for enumerating maximal 𝑘-biplexes on bipartite graphs.

Denote by (𝑆𝐿, 𝑆𝑅) the current 𝑘-biplex, (𝐶𝐿,𝐶𝑅) the candidate sets used to expand (𝑆𝐿, 𝑆𝑅), and
(𝑋𝐿, 𝑋𝑅) the exclusion sets containing all vertices in (𝐶𝐿,𝐶𝑅) that have been used to expand (𝑆𝐿, 𝑆𝑅).
Then, this branching rule (we only consider the case where the branching vertex (or pivot vertex)

is selected from𝐶𝑅 (or𝐶𝑅 ∪𝑋𝑅), as the branching vertex (or pivot vertex) from𝐶𝐿 (or𝐶𝐿 ∪𝑋𝐿) can

be obtained by a similar method) is shown as follows.

• Finding a vertex 𝑣 ∈ 𝑆𝐿 with the smallest degree in 𝑆𝑅 ∪𝐶𝑅 .

• If 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅) > 𝑘 , we select a vertex 𝑢 in 𝑁 𝑣 (𝐶𝑅) as the branching vertex.

• If 𝑑𝑣 (𝑆𝑅 ∪ 𝐶𝑅) ≤ 𝑘 , we select a pivot vertex from 𝐶𝑅 ∪ 𝑋𝑅 to construct the branching rules,

which involves two cases:

(1) If the pivot vertex 𝑣 is selected from 𝐶𝑅 , then each vertex in ({𝑣},𝐶𝑅 \ 𝑁𝑣 (𝐺)) is selected as

the branching vertex (based on Theorem 3.3).

(2) If the pivot vertex 𝑣 is selected from 𝑋𝑅 and satisfying ∄𝑢 ∈ 𝑁 𝑣 (𝑆𝑅) with 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿) ≥ 𝑘 ,

then each vertex in 𝐶𝑅 \ 𝑁𝑣 (𝐺) is selected as the branching vertex (based on Theorem 3.4).

Note that this branching rule does not take into account the vertices that belong to case (2) of

Theorem 3.4 as the pivot vertices. This is because we empirically find that case (2) leads to more

computation costs without significantly improving practical performance compared to case (1).

Therefore, for the sake of simplicity, we only select a pivot vertex from the candidate sets (𝐶𝐿,𝐶𝑅)
or from the vertices in (𝑋𝐿, 𝑋𝑅) belonging to the case (1) of Theorem 3.4 to perform the pivot-based

enumeration.

Implementation details. Armed with this pivot-based branching rule, we then develop a new

branch-and-bound procedure for enumerating maximal 𝑘-biplexes, which is shown in Algorithm 3.

Similar to the 𝐵𝑟𝑎𝑛𝑐ℎ procedure outlined in Algorithm 1, Algorithm 3 also first selects a vertex

from (𝑆𝐿, 𝑆𝑅) whose degree is minimum in (𝐶𝐿,𝐶𝑅) (lines 6-7). If there exists a vertex 𝑣 ∈ 𝑆𝐿 (or

𝑢 ∈ 𝑆𝑅) such that the number of non-neighbors in 𝑑𝑣 (𝑆𝑅 ∪ 𝐶𝑅) (or 𝑑𝑢 (𝑆𝐿 ∪ 𝐶𝐿)) exceeds 𝑘 , the
basic branching rule for enumerating maximal 𝑘-biplexes is employed (lines 8-13). Otherwise, the

pivoting technique is used to construct the branching rules. Specifically, the procedure first selects

a vertex 𝑣 (resp. 𝑢) from 𝐶𝐿 ∪ 𝑋𝐿 (resp. 𝐶𝑅 ∪ 𝑋𝑅 ) that has the fewest non-neighbors in 𝐶𝑅 (resp.

𝐶𝐿) as the candidate pivot vertex (lines 15-19). If a candidate vertex 𝑣 (or 𝑢) is chosen from 𝑋𝐿

(or 𝑋𝑅), every vertex 𝑢′ ∈ 𝑁 𝑣 (𝑆𝑅) (or 𝑣 ′ ∈ 𝑁𝑢 (𝑆𝐿)) must have at most 𝑘 − 1 non-neighbors in

𝑆𝐿 ∪𝐶𝐿 (or 𝑆𝑅 ∪𝐶𝑅) (lines 17 and 19) based on Theorem 3.4. Then, the procedure selects a better

vertex as the pivot vertex to continue enumerations (lines 20-22). Assume that the pivot vertex 𝑣 is

selected from 𝐶𝐿 . The procedure subsequently invokes the 𝐵𝑟𝑎𝑛𝑐ℎ𝑃 to construct the pivot-based

enumeration process, and then only selects each vertex 𝑢 in ({𝑣},𝐶𝑅 \ 𝑁𝑣 (𝐺)) as the branching
vertex to enumerate the maximal 𝑘-biplexes containing (𝑆𝐿, 𝑆𝑅) and 𝑢. Finally, this procedure

terminates if both𝐶𝐿 and𝐶𝑅 are empty sets (lines 1-5), and outputs the current 𝑘-biplex (𝑆𝐿, 𝑆𝑅) as
the maximal results when 𝑋𝐿 and 𝑋𝑅 are also the empty sets (lines 3-4).

We prove that such a pivot-based enumeration algorithm (Algorithm 3) has a better time com-

plexity result in enumerating maximal 𝑘-biplexes compared to that of Algorithm 1.

Theorem 3.5. The worst-case time complexity of Algorithm 3 is 𝑂 (𝑚𝛽𝑛
𝑘
) in enumerating maximal

𝑘-biplexes, where 𝛽𝑘 is the maximum real-root of equation 𝑥𝑘+2 − 2𝑥𝑘+1 + 1 = 0 if 𝑘 ≥ 1, i.e., when
𝑘 = 1, 2, and 3, we have 𝛽𝑘 = 1.618, 1.839, and 1.928, respectively.

Proof sketch.We note that the algorithm either adopts the basic branching rule or the pivot-based

branching rule to enumerate maximal 𝑘-biplexes. (1) When using the basic branching rule, we

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 135. Publication date: June 2024.



135:12 Qiangqiang Dai et al.

Algorithm 3: 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅)
1 if |𝑆𝐿 ∪𝐶𝐿 | < 𝑞 or |𝑆𝑅 ∪𝐶𝑅 | < 𝑞 then return;
2 if 𝐶𝐿 = ∅ and 𝐶𝑅 = ∅ then
3 if 𝑋𝐿 = ∅ and 𝑋𝑅 = ∅ then
4 if |𝑆𝐿 | ≥ 𝑙𝑏 and |𝑆𝑅 | ≥ 𝑙𝑏 then Output (𝑆𝐿, 𝑆𝑅);
5 return;

6 𝑣 ← argmax𝑣∈𝑆𝐿 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅); 𝑑𝐿 ← 𝑑𝑣 (𝑆𝑅 ∪𝐶𝑅);
7 𝑢 ← argmax𝑢∈𝑆𝑅 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿); 𝑑𝑅 ← 𝑑𝑢 (𝑆𝐿 ∪𝐶𝐿);
8 if 𝑑𝐿 > 𝑘 then
9 𝑤 ← a vertex in 𝑁 𝑣 (𝐶𝑅);

10 𝐵𝑟𝑎𝑛𝑐ℎ𝐵(𝑆𝑅,𝑤, 𝑆𝐿,𝐶𝑅,𝐶𝐿, 𝑋𝑅, 𝑋𝐿);

11 else if 𝑑𝑅 > 𝑘 then
12 𝑤 ← a vertex in 𝑁𝑢 (𝐶𝐿);
13 𝐵𝑟𝑎𝑛𝑐ℎ𝐵(𝑆𝐿,𝑤, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅);
14 else
15 𝑣 ← argmin𝑣∈𝐶𝐿

𝑑𝑣 (𝐶𝑅); 𝑢 ← argmin𝑢∈𝐶𝑅
𝑑𝑢 (𝐶𝐿);

16 foreach 𝑣 ′ ∈ 𝑋𝐿 s.t. 𝑑𝑣′ (𝐶𝑅) < 𝑑𝑣 (𝐶𝑅) do
17 if ∄𝑢′ ∈ 𝑁 𝑣′ (𝑆𝑅) with 𝑑𝑢′ (𝑆𝐿 ∪𝐶𝐿) ≥ 𝑘 then 𝑣 ← 𝑣 ′;

18 foreach 𝑢′ ∈ 𝑋𝑅 s.t. 𝑑𝑢′ (𝐶𝐿) < 𝑑𝑢 (𝐶𝐿) do
19 if ∄𝑣 ′ ∈ 𝑁𝑢′ (𝑆𝐿) with 𝑑𝑣′ (𝑆𝑅 ∪𝐶𝑅) ≥ 𝑘 then 𝑢 ← 𝑢′;

20 if 𝑑𝑣 (𝐶𝑅) ≤ 𝑑𝑢 (𝐶𝐿) then
21 𝐵𝑟𝑎𝑛𝑐ℎ𝑃 (𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅);
22 else 𝐵𝑟𝑎𝑛𝑐ℎ𝑃 (𝑆𝑅, 𝑢, 𝑆𝐿,𝐶𝑅,𝐶𝐿, 𝑋𝑅, 𝑋𝐿);
23 Function: 𝐵𝑟𝑎𝑛𝑐ℎ𝑃 (𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅)
24 foreach 𝑢 ∈ 𝐶𝑅 \ 𝑁𝑣 (𝐺) do
25 (𝐶′

𝐿
,𝐶′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝑅, 𝑢, 𝑆𝐿,𝐶𝑅,𝐶𝐿);

26 (𝑋 ′
𝐿
, 𝑋 ′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝑅, 𝑢, 𝑆𝐿, 𝑋𝑅, 𝑋𝐿);

27 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿, 𝑆𝑅 ∪ {𝑢},𝐶′𝐿,𝐶
′
𝑅
, 𝑋 ′

𝐿
, 𝑋 ′

𝑅
);

28 𝐶𝑅 ← 𝐶𝑅 \ {𝑢}; 𝑋𝑅 ← 𝑋𝑅 ∪ {𝑢};
29 if 𝑣 ∉ 𝑋𝐿 then
30 (𝐶′

𝐿
,𝐶′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝐿, 𝑣, 𝑆𝑅,𝐶𝐿,𝐶𝑅);

31 (𝑋 ′
𝐿
, 𝑋 ′

𝑅
) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑆𝐿, 𝑣, 𝑆𝑅, 𝑋𝐿, 𝑋𝑅);

32 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ(𝑆𝐿 ∪ {𝑣}, 𝑆𝑅,𝐶′𝐿,𝐶
′
𝑅
, 𝑋 ′

𝐿
, 𝑋 ′

𝑅
);

can obtain that 𝑇 (𝑛) ≤ ∑𝑘+1
𝑖=1 𝑇 (𝑛 − 𝑖) as proved in Theorem 3.1. (2) When using the pivot-based

branching rule, we can derive that 𝑇 (𝑛) ≤ ∑𝑑+1
𝑖=1 𝑇 (𝑛 − 𝑖), where 𝑑 is the number of non-neighbors

of the pivot vertex 𝑣 in the search space. We note that the subbranch for enumerating maximal

𝑘-biplexes containing (𝑆𝐿 ∪ {𝑣}, 𝑆𝑅) would make use of the basic branching rule to continue

enumerations if 𝑑 > 𝑘 . Based on this, we can obtain that in the worst case, the recurrence of case

(2) is bounded by 𝑇 (𝑛) ≤ ∑𝑘+1
𝑖=1 𝑇 (𝑛 − 𝑖). Thus, this theorem holds when adopting the theoretical

result in Theorem 3.1.

Theorem 3.6. For the special case of 𝑘 = 0, the time complexity of Algorithm 3 is 𝑂 (𝑚1.414𝑛).
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Proof sketch. In this case, we note that no basic branching rule is used in Algorithm 3 (lines 6-13),

Then, a recurrence of𝑇 (𝑛) ≤ 𝑇 (𝑛−𝑑 −1) +∑𝑑
𝑖=1𝑇 (𝑛−𝑑 −𝑖) can be obtained, where 𝑑 is the number

of non-neighbors of the pivot vertex 𝑣 in the search space. Based on the theoretical results presented

in [16], when 𝑘 = 1, 𝑇 (𝑛) has the maximum size. Thus, we have 𝑇 (𝑛) ≤ 𝑇 (𝑛 − 2) + 𝑇 (𝑛 − 2) =
2𝑇 (𝑛 − 2) = 2

𝑛/2𝑇 (0) ≈ 1.414𝑛𝑇 (0).
Remark. Although Algorithm 1 is found to underperform both theoretically and practically

compared to Algorithm 3, it plays a crucial role in the development of our improved algorithm.

Specifically, the developed pivot-based branching rule in Algorithm 3 builds on the branching rule

established in Algorithm 1. Furthermore, the non-trivial worst-case time complexity achieved by

Algorithm 1 serves as the foundation for demonstrating that Algorithm 3 can achieve an even better

time complexity. These close relationships highlight the necessity of the proposed Algorithm 1 in

this paper.

Discussions.We observe that several recent works in [16, 47, 51] are also applicable for solving our

problem. However, to our knowledge, the techniques developed in Algorithm 3 are very different

from all these existing techniques. Firstly, a BPEA algorithm developed in [16] also presents a

pivoting technique for enumerating maximal 𝑘-biplexes. As analyzed in [16], BPEA achieves a time

complexity of (𝑚1.414𝑛) only when 𝑘 = 0, which sames as that of our algorithm, since both BPEA
and Algorithm 3 correspond to enumerate maximal bicliques for the case where 𝑘 = 0. However,

when 𝑘 ≥ 1, the time complexity of this approach is still 𝑂 (𝑚2
𝑛), which is significantly higher

than that of our algorithm. The reasons for this difference are as follows. On the one hand, when

using the technique in [16] to expand (𝐴, 𝐵) with a vertex 𝑢 from (𝐶𝐿,𝐶𝑅), it is unclear whether
𝑢 possesses 𝑘 non-neighbors in 𝐵 (and 𝐴). Consequently, the search space (size of (𝐶𝐿,𝐶𝑅)) will
decrease by at least 1 when 𝑢 is added to (𝐴, 𝐵). On the other hand, the pivoting technique in [16]

requires considering the vertices in (𝑃 ∪ {𝑢},𝐶𝑅 \ 𝑁𝑢 (𝐺)) to expand the current 𝑘-biplex (𝐴, 𝐵),
where 𝑃 is the subset of 𝐶𝐿 , which can obtain a recurrence of 𝑍 (𝑛) ≤ ∑𝑑+1+|𝑃 |

𝑖=1
𝑍 (𝑛 − 𝑖). Since the

size of 𝑃 is also unclear, we can only obtain that 𝑑 + |𝑃 | < 𝑛, indicating that the size of 𝑍 (𝑛) is
bounded by 𝑂 (2𝑛). Thus, BPEA achieves a higher time complexity over Algorithm 3 when 𝑘 ≥ 1.

Secondly, we note that an approach for enumerating maximal 𝑘-plexes proposed in [51] can

be adapted to address our problem. In this approach, a vertex 𝑣 from (𝐴, 𝐵) (or (𝐶𝐿,𝐶𝑅)) with the

smallest degree is selected, and subsequently 𝑘+1 (or 𝑘+2) subbranches is constructed to enumerate

maximal 𝑘-biplexes based on the vertex 𝑣 . It can be observed that this approach also achieves the

same time complexity as Algorithm 1 [51]. However, the branching rule employed in Algorithm 1

differs significantly from the approach in [51], since Algorithm 1 only involves at most 2 subbranches

in each recursive call. Furthermore, the time complexity analysis of Algorithm 1 also varies from

that in [51]. In Theorem 3.1, we analyze that the recurrence inequation of Algorithm 1 is implicit

and requires detecting recursive calls up to a depth of 𝑘 , whereas the recurrence inequation in [51]

is more straightforward, with a maximum of 𝑘 + 2 subbranches for each recursive call. Nevertheless,

we further improve the branching rule in Algorithm 1 and develop an Algorithm 3 to achieves

better efficiency in both theoretical results and practical performance, making it challenging to

achieve the same level of efficiency as Algorithm 3 for the approach in [51].

Lastly, the approach proposed in [47] for finding the maximum 𝑘-biplex can also be slightly

modified to enumerate maximal 𝑘-biplexes, while maintaining a time complexity less than𝑂 (𝑚2
𝑛).

It is important to note that the enumeration of maximal 𝑘-biplexes poses greater challenges

compared to finding a maximum 𝑘-biplex. However, we emphasize that Algorithm 3 surpasses

the aforementioned approach in terms of time complexity. Thus, even if this approach is adapted
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to enumerate maximal 𝑘-biplexes, its theoretical efficiency clearly falls short of Algorithm 3.

Furthermore, as discussed in [16], this approach achieves the similar time complexity to Algorithm 1,

as their branching rules exhibit similarities with [51]. In fact, the literature [16] leverages an

adaptation from [47] to compare its performance against BPEA. The experiments demonstrate that

the approach developed in [47] exhibits significantly lower efficiency compared to BPEA, further
validating the superiority of proposed Algorithm 3.

4 OPTIMIZATION TECHNIQUES
In this section, we develop several techniques, including graph reduction, novel upper-bound

based pruning, and ordering-based optimization, to further improve the efficiency of the proposed

algorithms. Below, we first introduce the graph reduction techniques.

4.1 Graph Reduction Techniques
Here we introduce several key observations to reduce unnecessary vertices of the input graph, i.e.,

removing the vertices that are definitely not in any maximal 𝑘-biplexes with the sizes of both sides

no less than 𝑞.

Core-based reduction. A simple and efficient technique to reduce the input graph is based on a

(𝑙, 𝑟 )-core concept [9], which is formally defined as follows.

Definition 2 ((𝑙, 𝑟 )-core). Given a bipartite graph 𝐺 , a subgraph 𝐺 (𝐴, 𝐵) of 𝐺 is an (𝑙, 𝑟 )-core if
𝑑𝑣 (𝐵) ≥ 𝑟 for every 𝑣 ∈ 𝐴 and 𝑑𝑢 (𝐴) ≥ 𝑙 for every 𝑢 ∈ 𝐵.

In this paper, we call an (𝑙, 𝑟 )-core𝐺 (𝐴, 𝐵) maximal in𝐺 if there is no other (𝑙, 𝑟 )-core𝐺 (𝐴′, 𝐵′)
in 𝐺 with 𝐴 ⊆ 𝐴′ and 𝐵 ⊆ 𝐵′. The following lemma then widely used to improve the efficiency for

the enumeration of relative-large maximal 𝑘-biplexes [16, 49].

Lemma 2 ([49]). Any maximal 𝑘-biplex (𝐴, 𝐵) of𝐺 must be contained in the maximal (𝑞−𝑘, 𝑞−𝑘)-
core of 𝐺 if |𝐴| ≥ 𝑞 and |𝐵 | ≥ 𝑞.

Based on Lemma 2, every vertex excluded in the (𝑞 − 𝑘, 𝑞 − 𝑘)-core of𝐺 can be directly removed

from the original bipartite graph, which can significantly reduce the size of the input graph and

thus improve the efficiency of enumeration algorithms. To obtain the (𝑞 −𝑘, 𝑞 −𝑘)-core of bipartite
graph 𝐺 , the algorithms proposed in [4, 34] can be applied, which take only 𝑂 (𝑛 +𝑚) time.

Butterfly-based reduction. To further reduce the graph size, we propose a new butterfly-based

graph reduction technique. Here a butterfly is defined as a 2 × 2 biclique, which consists of four

vertices {𝑣1, 𝑣2, 𝑢1, 𝑢2} such that 𝑣1, 𝑣2 ∈ 𝐿, 𝑢1, 𝑢2 ∈ 𝑅, and the edges (𝑣1, 𝑢1), (𝑣1, 𝑢2), (𝑣2, 𝑢1), and
(𝑣2, 𝑢2) all exist in 𝐸. Below, we first give a useful lemma.

Lemma 3. Given a 𝑘-biplex (𝑆𝐿, 𝑆𝑅), the number of common neighbors for each 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑆𝐿 (resp.
𝑢𝑖 , 𝑢 𝑗 ∈ 𝑆𝑅) is no less than |𝑆𝑅 | − 2𝑘 (resp. |𝑆𝐿 | − 2𝑘).

Proof. Let cn𝑆𝑅 (𝑣𝑖 , 𝑣 𝑗 ) be the number of common neighbors of 𝑣𝑖 and 𝑣 𝑗 in 𝑆𝑅 . We can derive that

cn𝑆𝑅 (𝑣𝑖 , 𝑣 𝑗 ) ≥ |𝑆𝑅 | −𝑑𝑣𝑖 (𝑆𝑅) −𝑑𝑣𝑗 (𝑆𝑅). For a 𝑘-biplex (𝑆𝐿, 𝑆𝑅), we have 𝑑𝑣𝑖 (𝑆𝑅) ≤ 𝑘 and 𝑑𝑣𝑗 (𝑆𝑅) ≤ 𝑘 ,

where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑆𝐿 , implying cn𝑆𝑅 (𝑣𝑖 , 𝑣 𝑗 ) ≥ |𝑆𝑅 | − 2𝑘 . This inequality also holds when 𝑢𝑖 , 𝑢 𝑗 ∈ 𝑆𝑅 .
Thus, we establish this lemma. □

Denote by bfy𝐺 (𝑒) the number of butterflies in 𝐺 that contains the edge 𝑒 . Then, we can derive

the lower bound of bfy𝐻 (𝑒) for each 𝑒 in a 𝑘-biplex 𝐻 = 𝐺 (𝐴, 𝐵, 𝐸𝐻 ), which is presented in the

following lemma.

Lemma 4. Given a 𝑘-biplex 𝐻 = 𝐺 (𝐴, 𝐵, 𝐸𝐻 ) with min{|𝐴|, |𝐵 |} ≥ 𝑞, for each edge 𝑒 ∈ 𝐸𝐻 , we
have bfy𝐻 (𝑒) ≥ (𝑞 − 𝑘 − 1) (𝑞 − 2𝑘 − 1).
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Algorithm 4: Butterfly-based reduction

Input: Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) and the size threshold 𝑞

Output: A pruned bipartite graph

1 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
2 bfy𝐺 (𝑒) ← 0;

3 for 𝑢′ ∈ 𝑁𝑣 (𝐺) s.t. 𝑢′ ≠ 𝑢 do
4 bfy𝐺 (𝑒) ← bfy𝐺 (𝑒) + |𝑁𝑢 (𝐺) ∩ 𝑁𝑢′ (𝐺) | − 1;

5 while ∃𝑒 = (𝑢, 𝑣) ∈ 𝐸 with bfy𝐺 (𝑒) < (𝑞 − 𝑘 − 1) (𝑞 − 2𝑘 − 1) do
6 Remove 𝑒 = (𝑢, 𝑣) from 𝐺 ;

7 for 𝑢′ ∈ 𝑁𝑣 (𝐺) s.t. 𝑢′ ≠ 𝑢 do
8 𝑒′ = (𝑣,𝑢′);
9 bfy𝐺 (𝑒′) ← bfy𝐺 (𝑒′) − |𝑁𝑢 (𝐺) ∩ 𝑁𝑢′ (𝐺) | + 1;

10 for 𝑣 ′ ∈ 𝑁𝑢 (𝐺) ∩ 𝑁𝑢′ (𝐺) do
11 𝑒1 = (𝑢, 𝑣 ′); 𝑒2 = (𝑢′, 𝑣 ′);
12 bfy𝐺 (𝑒1) ← bfy𝐺 (𝑒1) − 1; bfy𝐺 (𝑒2) ← bfy𝐺 (𝑒2) − 1;

13 if 𝑑𝑣 (𝐺) < 𝑞 − 𝑘 then
14 for 𝑢′ ∈ 𝑁𝑣 (𝐺) s.t. 𝑢′ ≠ 𝑢 do bfy𝐺 (𝑒′ = (𝑣,𝑢′)) = 0;

15 if 𝑑𝑢 (𝐺) < 𝑞 − 𝑘 then
16 for 𝑣 ′ ∈ 𝑁𝑢 (𝐺) s.t. 𝑣 ′ ≠ 𝑣 do bfy𝐺 (𝑒′ = (𝑣 ′, 𝑢)) = 0;

17 return 𝐺 ;

Proof. Given an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐻𝐸 with 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵, if 𝑦 ∈ 𝑁𝑢 (𝐻 ) and 𝑥 ∈ 𝑁𝑣 (𝐻 ) ∩
𝑁𝑦 (𝐻 ), we obtain that {𝑢, 𝑥, 𝑣,𝑦} must be a butterfly in 𝐻 . With this observation, we can compute

bfy𝐻 (𝑒) as follows: bfy𝐻 (𝑒) =
∑

𝑦∈𝑁𝑢 (𝐻 ),𝑦≠𝑣 ( |𝑁𝑣 (𝐻 ) ∩ 𝑁𝑦 (𝐻 ) | − 1). From Lemma 3, it can be

deduced that |𝑁𝑣 (𝐻 ) ∩ 𝑁𝑦 (𝐻 ) | ≥ 𝑞 − 2𝑘 for every 𝑦 ∈ 𝐵 if min{|𝐴|, |𝐵 |} ≥ 𝑞. Moreover, based on

the fact that |𝑁𝑢 (𝐻 ) | ≥ 𝑞 − 𝑘 , we can conclude that bfy𝐻 (𝑒) ≥ (𝑞 − 𝑘 − 1) (𝑞 − 2𝑘 − 1). Thus, the
lemma is established. □

With Lemma 4, we can safely remove all unnecessary edges of the bipartite graph 𝐺 when

enumerating all maximal 𝑘-biplexes with sizes of both sides no less than 𝑞. To achieve this, we

first compute bfy𝐺 (𝑒) for each 𝑒 in 𝐺 . Then, we iteratively remove all edges with the number of

butterflies less than (𝑞 − 𝑘 − 1) (𝑞 − 2𝑘 − 1). The detailed pseudo-code is presented in Algorithm 4.

In Algorithm 4, it first computes the number of butterflies containing each edge 𝑒 in𝐺 (lines 1-4).

Specifically, given an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, the value of bfy𝐺 (𝑒) in 𝐺 can be computed using the

formula bfy𝐺 (𝑒) =
∑

𝑦∈𝑁𝑢 (𝐺 ),𝑦≠𝑣 ( |𝑁𝑣 (𝐺) ∩ 𝑁𝑦 (𝐺) | − 1), since {𝑢, 𝑥, 𝑣,𝑦} must be a butterfly in 𝐺

if 𝑦 ∈ 𝑁𝑢 (𝐺) and 𝑥 ∈ 𝑁𝑣 (𝐺) ∩ 𝑁𝑦 (𝐺). Then, the algorithm iteratively removes each edge 𝑒 from 𝐸

if bfy𝐺 (𝑒) < (𝑞 −𝑘 − 1) (𝑞 − 2𝑘 − 1) (lines 5-12). Note that when an edge 𝑒 = (𝑢, 𝑣) is removed from

𝐸, the butterflies containing the edge 𝑒 will be invalidated. Consequently, the bfy𝐺 (𝑒) values of the
remaining edges on these butterflies must be updated as well (lines 7-12). Finally, the algorithm

terminates when the value of bfy𝐺 (𝑒) for each remaining edge 𝑒 is no less than (𝑞−𝑘−1) (𝑞−2𝑘−1),
at which point the subgraph induced by these remaining edges is returned. The following shows

the time complexity of Algorithm 4.

Theorem 4.1. The time complexity of Algorithm 4 is 𝑂 (𝑚𝑑2𝑚𝑎𝑥 ), where 𝑑𝑚𝑎𝑥 is the largest degree
of vertices in 𝐺 .
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Proof. For each edge 𝑒 , it takes at most 𝑂 (𝑑2𝑚𝑎𝑥 ) time to compute bfy𝐺 (𝑒), so the total time for

the initial phase of the algorithm is bounded by𝑂 (𝑚𝑑2𝑚𝑎𝑥 ) (lines 1-4). Moreover, when removing an

edge 𝑒 , the value bfy𝐺 (𝑒) of the remaining edges on the butterflies that contains 𝑒 must be updated

(lines 7-12), which also takes 𝑂 (𝑑2𝑚𝑎𝑥 ) time. Thus, the overall time complexity of Algorithm 4 is

bounded by 𝑂 (𝑚𝑑2𝑚𝑎𝑥 ). □

Although the worst-case time complexity of Algorithm 4 is𝑂 (𝑚𝑑2
max
), the practical performance

of Algorithm 4 is very efficient as confirmed in our experiments. The reasons are as follows. First,

the complexity for most edges often cannot reach 𝑂 (𝑑2
max
), so the practical cost of Algorithm 4 is

typically much lower than the worst-case time complexity. Second, we can first use the core-based

technique to reduce the input graph, and then apply the butterfly-based reduction technique to the

subgraph obtained by the core-based reduction. This approach takes advantage of both techniques

to improve the practical performance of Algorithm 4.

Discussion. It is worth noting that the literature [13] employed coreness and cliqueness pruning

techniques for enumerating large maximal 𝑘-plexes. We observe that the coreness pruning proposed

in [13] can be directly extended for enumerating large 𝑘-biplexes, aligning with the core-based

graph reduction presented in Lemma 2. However, our proposed butterfly-based pruning technique

significantly differs from the cliqueness pruning technique. Specifically, the idea of our proposed

butterfly-based technique is derived from a result of Lemma 3. By leveraging this result, we establish

that each edge in a bipartite graph must be associated with at least (𝑞−𝑘 − 1) (𝑞− 2𝑘 − 1) butterflies
if it is included in a 𝑘-biplex with both sides having a size no less than 𝑞. In contrast, the cliqueness

pruning in [13] relies on the existence of a clique of size ⌈𝑞/𝑘⌉ in a 𝑘-plex of size 𝑞, which poses

challenges to extend it to enumerate maximal 𝑘-biplexes. Additionally, computing cliques of size

⌈𝑞/𝑘⌉ is much more difficult than computing butterflies, which makes the cliqueness pruning

technique in [13] inefficient in removing unnecessary vertices from bipartite graphs.

4.2 Upper-Bound Techniques
If we can determine an upper bound on the size of one side of the maximal 𝑘-biplexes containing

(𝐴, 𝐵) smaller than a threshold 𝑞, it is obvious to obtain that all maximal 𝑘-biplexes that contain

(𝐴, 𝐵) are unnecessary to be enumerated. With this idea, we present a new upper-bound technique.

Let ub𝑘𝐺 (𝐴, 𝐵) be the upper bound on the size of the maximal 𝑘-biplex in 𝐺 that contains (𝐴, 𝐵).
In other words, ub𝑘𝐺 (𝐴, 𝐵) satisfies the inequality min{|𝑋 |, |𝑌 |} ≤ ub𝑘𝐺 (𝐴, 𝐵), where (𝑋,𝑌 ) is a
randommaximal 𝑘-biplex of𝐺 that contains (𝐴, 𝐵). Then, we can easily derive the following lemma.

Lemma 5. Let (𝐴, 𝐵) be a 𝑘-biplex of 𝐺 , then we have ub𝑘𝐺 (𝐴, 𝐵) ≤ min𝑢∈𝐴{𝑑𝑢 (𝐺) + 𝑘 − 𝑑𝑢 (𝐵)}.

Such a basic upper-bound technique is not very tight, which may result in poor pruning per-

formance. To mitigate this scenario, we develop a tighter upper bound. Given a 𝑘-biplex (𝐴, 𝐵),
let 𝑇 𝑟

𝐵
(𝐴) ⊆ 𝐵 be 𝑟 vertices in 𝐵 that have most number of non-neighbors in 𝐴, i.e., each ver-

tex 𝑣𝑖 in 𝑇 𝑟
𝐵
(𝐴) satisfies 𝑑𝑣𝑖 (𝐴) ≥ 𝑑𝑣𝑗 (𝐴), where 𝑣 𝑗 ∈ 𝐵 \ 𝑇 𝑟

𝐵
(𝐴) and |𝑇 𝑟

𝐵
(𝐴) | = 𝑟 . Denote by

𝑛𝑏𝐴 (𝐵) =
∑

𝑣∈𝐴 𝑑𝑣 (𝐵) the sum of non-neighbor counts in 𝐵 for each vertex in 𝐴. Suppose that the

vertex 𝑢 ∈ 𝐿 \𝐴 is used to add to (𝐴, 𝐵), and 𝐷 = {𝑣 ∈ 𝑁𝑢 (𝐺) \ 𝐵 | (𝐴 ∪ {𝑢}, 𝐵 ∪ {𝑣}) is a 𝑘-biplex}
is the set of neighbors of 𝑢 that can be used to expand (𝐴 ∪ {𝑢}, 𝐵). Then, the next lemma shows a

tighter upper bound.

Lemma 6. Denote by 𝐼 ⊆ 𝐴 the set of vertices that have more than 𝑘 non-neighbors in 𝐵 ∪ 𝐷 i.e.,
𝐼 = {𝑣 ∈ 𝐴|𝑑𝑣 (𝐵 ∪𝐷) > 𝑘}. Let 𝑟 be the minimum non-negative integer satisfying

∑
𝑣∈𝑇 𝑟

𝐷
(𝐴) 𝑑𝑣 (𝐴) ≥

𝑛𝑏𝐼 (𝐵 ∪ 𝐷) − |𝐼 | × 𝑘 , then we have ub𝑘𝐺 (𝐴 ∪ {𝑢}, 𝐵) ≤ |𝐵 | + |𝐷 | + 𝑘 − 𝑑𝑢 (𝐵) − 𝑟 .
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Algorithm 5:𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (𝐴, 𝐵,𝑢)
1 𝑠 ← 0;

2 𝐷 ← {𝑣 ∈ 𝑁𝑢 (𝐺) \ 𝐵 | (𝐴 ∪ {𝑢}, 𝐵 ∪ {𝑣}) is a 𝑘-biplex};
3 for𝑤 ∈ 𝐴 do
4 if 𝑑𝑤 (𝐵 ∪ 𝐷) > 𝑘 then 𝑠 ← 𝑠 + 𝑑𝑤 (𝐵 ∪ 𝐷) − 𝑘 ;

5 𝑢𝑏 ← |𝐵 | + |𝐷 | + 𝑘 − 𝑑𝑢 (𝐵);
6 while 𝑠 > 0 do
7 𝑣 ← argmax𝑤∈𝐷 𝑑𝑤 (𝐴);
8 𝐷 ← 𝐷 \ {𝑣};
9 𝑠 ← 𝑠 − 𝑑𝑣 (𝐴);

10 𝑢𝑏 ← 𝑢𝑏 − 1;
11 return 𝑢𝑏;

Proof. It is easy to see that ub𝑘𝐺 (𝐴 ∪ {𝑢}, 𝐵) ≤ |𝐵 | + |𝐷 | + 𝑘 − 𝑑𝑢 (𝐵), as there are at most

|𝐷 | + 𝑘 − 𝑑𝑢 (𝐵) vertices that can be added to (𝐴 ∪ {𝑢}, 𝐵). Then, it is important to note that all

vertices in 𝐼 ⊆ 𝐴 violate the definition of 𝑘-biplex, and it is necessary to remove some vertices

from 𝐷 . In the worst-case, we assume that each vertex in 𝐼 is the non-neighbor of 𝑣 ∈ 𝑇 𝑟
𝐷
(𝐴).

Consequently, 𝑟 vertices must be removed from 𝐷 to ensure that every vertex in 𝐼 satisfies the

definition of 𝑘-biplex. □

The following example illustrates the idea of Lemma 6.

Example 3. Consider a bipartite graph 𝐺 shown in Fig. 1, and suppose that (𝐴, 𝐵) = ({𝑢1}, {𝑣2})
forms a 𝑘-biplex with vertex 𝑣6 ∈ 𝑅 used to add to (𝐴, 𝐵). When 𝑘 = 1, we have 𝐷 = {𝑢2, 𝑢3, 𝑢5} ⊆
𝑁𝑣6 (𝐺) and 𝐼 = {𝑣2} ⊆ 𝐵. By Lemma 6, we can compute that

∑
𝑣∈𝑇 1

𝐷
(𝐵) 𝑑𝑣 (𝐵) = 1 ≥ 𝑛𝑏𝐼 (𝐴∪𝐷) − |𝐼 | ×

𝑘 = 2− 1 = 1, which implies 𝑟 ≥ 1. Hence, ub𝑘𝐺 (𝐴, 𝐵∪ {𝑣6}) ≤ |𝐴| + |𝐷 | +𝑘 −𝑑𝑣6 (𝐴) − 𝑟 = 3. However,
using Lemma 5 yields a looser bound of ub𝑘𝐺 (𝐴, 𝐵 ∪ {𝑣6}) ≤ 4. This example further illustrates that
Lemma 6 provides a tighter bound than Lemma 5.

Based on Lemma 6, we propose an algorithm to compute ub𝑘𝐺 (𝐴∪{𝑢}, 𝐵), as shown in Algorithm 5.

In Algorithm 5, it admits three parameters: 𝐴, 𝐵, and 𝑢, where (𝐴, 𝐵) denotes a current 𝑘-biplex,
and 𝑢 ∈ 𝐿 \ 𝐴 is the vertex used to add to (𝐴, 𝐵). The algorithm begins by obtaining the set

𝐷 ⊆ 𝑁𝑢 (𝐺) of vertices that can be added to (𝐴 ∪ {𝑢}, 𝐵) to form a larger 𝑘-biplex (line 2). Then,

the algorithm finds the vertices in 𝐴 that violate the definition of the 𝑘-biplex and computes the

sum of non-neighbor counts 𝑠 in 𝐵 ∪ 𝐷 for these violating vertices (lines 2-3). Subsequently, the

algorithm iteratively removes each vertex 𝑣 in 𝐷 that has the highest non-neighbor counts in 𝐴,

and uses the value of 𝑑𝑣 (𝐴) to decrease the total non-neighbor counts 𝑠 (lines 6-10), as it is possible
that all vertices in 𝑁 𝑣 (𝐴) violate the definition of the 𝑘-biplex in 𝐺 (𝐴 ∪ {𝑢}, 𝐵 ∪ 𝐷). Finally, the
algorithm terminates when 𝑠 ≤ 0, and returns the number of remaining vertices in 𝐷 as the upper

bound (line 5 and line 10).

Theorem 4.2. The time complexity of Algorithm 5 is 𝑂 (𝑘𝑑𝑚𝑎𝑥 ) if the set 𝐷 ⊆ 𝑁𝑣 (𝐺) is given,
where 𝑑𝑚𝑎𝑥 is the maximum degree of the bipartite graph.

Proof. If we use an array to store the non-neighbors in𝐴 of each vertex in𝐷 , it is straightforward

to see that lines 3-4 take at most 𝑂 (𝑘𝑑𝑚𝑎𝑥 ) time and line 7 takes at most 𝑂 (𝑘) time. Thus, the time

complexity of Algorithm 5 is bounded by 𝑂 (𝑘𝑑𝑚𝑎𝑥 ). □
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Algorithm 6: The improved branch-and-bound algorithm

Input: Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), two parameters 𝑘 and 𝑞

Output: All relatively-large maximal 𝑘-biplexes of 𝐺

1 Reduce the bipartite graph 𝐺 with core-based reduction;

2 Further reduce 𝐺 with Algorithm 4, and let 𝐻 = (𝐿𝐻 , 𝑅𝐻 , 𝐸𝐻 ) be the subgraph of 𝐺 induced by

remaining vertices and edges;

3 𝑉 ← ∅;
4 𝑑𝐿𝑚𝑎𝑥 ← max𝑣∈𝐿𝐻 𝑑𝑣 (𝐻 ); 𝑑𝑅𝑚𝑎𝑥 ← max𝑢∈𝑅𝐻

𝑑𝑢 (𝐻 );
5 if 𝑑𝐿𝑚𝑎𝑥 ≥ 𝑑𝑅𝑚𝑎𝑥 then 𝑉 ← 𝐿𝐻 ;

6 else 𝑉 ← 𝑅𝐻 ;

7 O ← the ordering of vertices in 𝐻 ;

8 foreach 𝑣𝑖 ∈ O s.t. 𝑣𝑖 ∈ 𝑉 do
9 Let 𝐻𝑣𝑖 = (𝐿𝐻𝑣𝑖

, 𝑅𝐻𝑣𝑖
, 𝐸𝐻𝑣𝑖

) be the subgraph 𝐺≻𝑣𝑖 ;
10 𝐶𝐿 ← 𝐿𝐻𝑣𝑖

\ {𝑣𝑖 }; 𝐶𝑅 ← 𝑅𝐻𝑣𝑖
;

11 𝑋𝐿 ← {𝑣 𝑗 ∈ O|𝑣𝑖 ≻ 𝑣 𝑗 , 𝑁𝑣𝑖 ∩ 𝑁𝑣𝑗 ≠ ∅}; 𝑋𝑅 ← ∅;
12 Reduce the size of 𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅 with Lemma 3;

13 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ({𝑣𝑖 }, ∅,𝐶𝐿,𝐶𝑅, 𝑋𝐿, 𝑋𝑅); /* Employed the upper-bound techniques presented

in Sec. 4.2 */

4.3 Ordering-Based Optimization
Inspired by existing solutions [16], an ordering technique can be employed to improve the efficiency

of enumerating maximal 𝑘-biplexes. The detailed technique is introduced below.

Consider an ordering O = {𝑣1, 𝑣2, . . . , 𝑣𝑛} of vertices in 𝐿 ∪ 𝑅. We define 𝑣𝑖 ≻ 𝑣 𝑗 to indicate that

the vertex 𝑣𝑖 is ranked after 𝑣 𝑗 in O (i.e., 𝑣𝑖 ∈ {𝑣 𝑗 , 𝑣 𝑗+1, . . . , ..., 𝑣𝑛}). Denote by 𝑁 ≻2𝑣 (𝐺) the set of
vertices in𝐺 that are at a distance of 2 from 𝑣 , and ranked after 𝑣 in O, i.e., 𝑁 ≻2𝑣 (𝐺) = {𝑣 ′ ∈ O|𝑣 ′ ≻
𝑣, 𝑁𝑣′ (𝐺) ∩ 𝑁𝑣 (𝐺) ≠ ∅}. Denote by Γ≻2𝑣 (𝐺) = 𝑁 ≻2𝑣 (𝐺) ∪ {𝑣}. We define the subgraph 𝐺≻𝑣 of 𝐺

as the bipartite graph induced by the vertices in Γ≻2𝑣 (𝐺) and their neighbors (∪𝑢∈Γ≻2𝑣 (𝐺 )𝑁𝑢 (𝐺)).
Given a maximal 𝑘-biplex (𝐴, 𝐵) of 𝐺 with the sizes of both sides no less than 𝑞 ≥ 2𝑘 + 1, let
𝑣𝑖 be the rank smallest vertex in 𝐴 according to the ordering O. We observe that (𝐴, 𝐵) must be

contained in the subgraph 𝐺≻𝑣𝑖 , where 𝑣𝑖 ∈ 𝐿 with the condition of 𝐴 ⊆ 𝐿. Therefore, we can devise

an ordering-based enumeration algorithm to identify the maximal 𝑘-biplexes of𝐺 , i.e., enumerating

all maximal 𝑘-biplexes in 𝐺≻𝑣𝑖 for each 𝑣𝑖 ∈ O ∩ 𝐿.
In this paper, we adopt the widely used degeneracy ordering [29, 30] as the vertex ordering

scheme, which is obtained by treating the bipartite graphs as the traditional graph and then applying

the peeling technique [4, 29]. Moreover, we note that selecting vertices from one side of the bipartite

graph to construct the subgraph 𝐺≻𝑣𝑖 is sufficient for enumerating all maximal 𝑘-biplexes. Based on

our empirical studies, we find that in most real-world graphs, choosing the side with the larger

maximum degree yields better performance. This observation may attributed to the fact that such

a selection method leads to a smaller subgraph 𝐺≻𝑣𝑖 , thus improving the efficiency of enumeration

process.

The implementation details. Armed with the optimization techniques presented in this section,

we develop an improved algorithm for enumerating maximal 𝑘-biplexes, which is presented in

Algorithm 6. Initially, this algorithm makes use of the core-based reduction and the butterfly-based

reduction (lines 1-2). Then, the algorithm selects one side of the vertices, where the side has a larger

maximum degree compared to the other side, to perform the ordering-based enumerations in the

subgraph induced by the remaining edges. When it comes to enumerating the maximal 𝑘-biplexes

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 135. Publication date: June 2024.



Efficient Maximal Biplex Enumerations with Improved Worst-Case Time Guarantee 135:19

Table 1. Real-world bipartite graph datasets.

Datasets |𝐿 | |𝑅 | |𝐸 | 𝑑1max 𝑑2max

YouTube 94,238 30,087 293,360 1,035 7,591

IMDB 303,617 896,302 3,782,463 1,334 1,590

Amazon 2,146,057 1,230,915 5,743,258 12,217 3,146

Wikisource 18,038 2,192,849 6,561,379 916,505 30,606

Twitter 244,537 9,129,669 12,656,613 855 24,106

Google 5,998,790 4,443,631 20,592,962 423 95,165

of𝐺 , the algorithm simply makes use of the recursive procedure 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ to enumerate maximal

𝑘-biplexes containing 𝑣𝑖 in subgraph 𝐺≻𝑣𝑖 for each 𝑣𝑖 ∈ 𝑉 according to the ordering O (lines 8-13).

Note that in each recursive call of 𝐼𝑚𝑝𝐵𝑟𝑎𝑛𝑐ℎ, the upper-bound techniques presented in Sec. 4.2

are also used for improving efficiency. After each vertex 𝑣𝑖 in𝑉 has been processed by the recursive

calls, this algorithm finished.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the efficiency of our algorithms.

Below, we first introduce the experimental setup and then present the results.

5.1 Experimental Setup

Algorithms.We implement two algorithms, namely BPBnB and BPPivot, for enumerating maxi-

mal 𝑘-biplexes on bipartite graphs, where BPBnB is the Algorithm 1 and BPPivot is the Algorithm 3

equipped with pivot-based branching rules. To ensure fairness in the experiments, both algo-

rithms BPBnB and BPPivot are also augmented with all optimization techniques presented in

Sec. 4, including the graph reductions, upper-bound techniques, and ordering-based optimization

(Algorithm 6).

To evaluate the performance of our proposed algorithms, we also conduct comparative evaluations

against the state-of-the-art algorithm called BPEA, as introduced in [16]. As highlighted in [16],

all other existing solutions, including the maximal 𝑘-biplex enumeration algorithms developed in

[38, 48, 49] and an adaptation in [47], exhibit significantly lower performance compared to BPEA.
Therefore, in this paper, we exclusively make use of BPEA as the baseline algorithm for evaluating

the efficiency of our proposed algorithms. All the algorithms are implemented in C++, and tested

on a PC with one 2.2 GHz CPU and 64GB memory running CentOS operating system. Note that

the runtime of all algorithms (including our algorithms and the state-of-the-art BPEA) displayed in

our experiments includes both time spend on graph reductions and the enumeration process.

Datesets.We use 6 real-world bipartite graphs to evaluate the efficiency of different algorithms.

Most of these bipartite graphs are widely used as benchmark datasets to evaluate the performance

of various 𝑘-biplex enumeration algorithms [16, 48, 49]. The detailed statistics of each dataset are

shown in Table 1, where the columns 𝑑1𝑚𝑎𝑥 and 𝑑2𝑚𝑎𝑥 denote the maximum degree of vertices in 𝐿

and 𝑅, respectively. All datasets can be downloaded from http://konect.cc.

Parameters. As the 𝑘-biplexes with small sizes are often sparse and not of significant practical

value [16, 49], we focus only on enumerating the maximal 𝑘-biplexes with sizes no less than

𝑞 ≥ 2𝑘 + 1 in our experiments. We vary the value of 𝑘 from 1 to 6 with a default setting of 2.

Due to the extensive number of small-sized 𝑘-biplexes in each dataset, it becomes impractical for

all algorithms to complete the processing within the 24 hour time constraint. Consequently, we

select 𝑞 values ranging between 10 and 20 for all tested datasets if 𝑘 ≤ 2. For 𝑘 ≥ 3, we employ an

adaptive approach to select the values of 𝑞 for each dataset.
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Table 2. Runtime of different algorithms with varying 𝑘 and 𝑞 on real-world bipartite graphs (in seconds).
Datasets 𝑘 𝑞 #Nums BPPivot BPBnB BPEA 𝑘 𝑞 #Nums BPPivot BPBnB BPEA 𝑘 𝑞 #Nums BPPivot BPBnB BPEA

YouTube
1

10 1.60×107 58.59 — 136.65

3

15 3.15×109 38381 — —

5

20 2.54×108 11419 20259 —

14 5.92×102 0.14 0.61 1.76 17 2.17×106 56.02 202.64 43221 22 2.12×102 1.12 0.43 —

2

12 1.27×109 7847.2 — 40265

4

18 3.30×108 8020.6 31323 —

6

22 6.40×107 6698.1 8171.3 —

16 8.95×103 0.65 1.03 160.71 20 1.80×103 2.22 1.29 50024 24 0.17×102 0.24 0.91 —

IMDB
1

15 2.03×106 6.42 63362 30.05

3

20 1.17×108 1292.5 70292 61698

5

24 4.02×108 8814.25 — —

19 24 0.28 0.28 0.41 22 3.38×104 1.31 6.27 768.44 26 3.8×103 0.44 0.79 1659.9

2

15 2.06×109 9363.1 — —

4

22 3.69×108 5955.2 — —

6

26 1.59×108 4336.8 17483 —

20 1.66×104 0.53 1.65 79.80 24 1.67×104 1.11 2.49 2072.2 28 205 0.21 0.28 37.23

Wikisource
1

15 3.08×106 16.04 78023 37.50

3

19 6.32×107 3441.7 67208 —

5

23 2.02×103 5864.1 — —

20 0 0.09 0.09 0.17 21 0.74×102 0.68 3.74 18325 25 0 0.21 0.52 —

2

17 9.75×107 950.81 — 20346

4

21 2.58×105 6896.7 — —

6

25 0.40×102 5779.9 — —

20 8 0.16 0.18 49.11 22 2.37×102 54.27 1325.4 — 26 0 49.17 338.64 —

Amazon
1

10 9.63×104 3.32 — 626.8

3

12 5.45×108 14719 — —

5

16 5.58×108 30172 48029 —

14 0.43×102 0.47 0.52 1.68 15 4.93×104 1.71 4565.1 — 18 1.33×104 2.82 4.50 —

2

10 6.04×107 1403.3 — —

4

14 1.27×109 31501 — —

6

18 3.01×107 21375 9109.1 —

14 5.53×103 0.74 16.55 5283 16 7.57×106 18.62 — — 19 1.37×104 120.24 81.76 —

Twitter
1

16 1.47×109 2211.1 — —

3

22 1.63×107 116.64 — 23062

5

26 6.63×106 156.16 — 2304.8

20 1.62×105 0.38 — 0.78 25 4.45×104 1.63 — 69.60 30 4.93×103 0.68 — 147.94

2

18 6.23×108 4315.5 — —

4

23 2.01×109 50997 — —

6

27 1.03×107 139.46 — 2365.4

20 2.67×106 18.99 — 1062.3 25 1.02×106 8.66 — 400.36 30 8.47×103 1.447 — 476.33

Google
1

10 4.01×103 4.31 38.89 12.01

3

12 5.50×108 11177 — —

5

16 1.51×107 11881 — —

13 0 0.83 1.68 1.06 14 3.83×103 1.53 7.97 66231 17 4.07×102 44.37 139.03 —

2

10 1.49×108 1458.0 — —

4

14 3.21×108 15561 — —

6

18 4.24×103 13839 — —

13 1.13×102 0.94 4.29 113.61 15 2.73×105 63.0 822.29 — 19 0 10.80 17.41 —

5.2 Experimental Results

Exp-1: Runtime of various algorithms. In this experiment, we evaluate the performance of

various algorithms in terms of their runtime for enumerating maximal 𝑘-biplexes. Table. 2 shows

results obtained by varying the values of 𝑞 and 𝑘 on all tested datasets, where the label “—” indicates

cases where the algorithm can not complete the computations within 24 hours, #Nums denotes

the number of maximal 𝑘-biplexes with the sizes of both sides no less than 𝑞. From Table. 2, the

runtime of all algorithms increases dramatically with decreasing values of 𝑞 or increasing values of

𝑘 . This behavior is attributable to the fact that the number of maximal 𝑘-biplexes is highly sensitive

to the parameters 𝑞 and 𝑘 . For example, on the Google dataset, when 𝑘 = 2 and 𝑞 = 13, there are

only 113 maximal 𝑘-biplexes. However, when 𝑞 = 10, the number of maximal 𝑘-biplexes increases

drastically to 1.49 × 108. Nevertheless, our improved algorithm BPPivot consistently outperforms

the state-of-the-art solution BPEA across all parameter settings. More specifically, our algorithm

BPPivot achieves at least three orders of magnitude faster computation times than BPEA on most

testing datasets. For instance, on the Amazon dataset with 𝑘 = 3 and 𝑞 = 15, our algorithm BPPivot
takes a mere 1.71 seconds to finish the computations, while the state-of-the-art algorithm BPEA
cannot terminate within 24 hours. The results showcase demonstrate the high efficiency of the

proposed techniques in enumerating maximal 𝑘-biplexes, even in scenarios with large values of

𝑘 (𝑘 grows to 6). In addition, when comparing with BPPivot and BPEA, we can observe that the

runtime of BPBnB is usually higher than that of BPPivot. However, it can still be significantly

faster than BPEA across most parameter settings. These results further confirm the efficiency of

the proposed pivoting technique and branching rules presented in Section 3.2.

Exp-2: Results of algorithms with or without graph reduction techniques. To evaluate

the effectiveness of graph reduction techniques, we also implement four algorithms, BPPivotN,
BPPivotC, BPEAN, and BPEAB, for enumerating maximal 𝑘-biplexes. Here BPPivotN and BPEAN
refer to algorithms BPPivot and BPEA without any graph reductions, respectively. BPPivotC and

BPEAB denote the algorithm BPPivot equipped with the core reduction only and the algorithm

BPEA equipped with our proposed butterfly-based reduction, respectively. Fig. 4 shows the runtime
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Fig. 4. Effects of graph reduction techniques.

0

20K

40K

60K

80K

100K

 10  11  12  13  14  15
 0

 0.5

 1

 1.5

 2

 2.5

N
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

T
im

e
(s

e
c
)

q

RD-Core
RD-Bufly
TM-Core

TM-Bufly

(a) Amazon (𝑘 = 2)

25K

50K

75K

100K

125K

150K

175K

200K

 10  11  12  13  14  15
 0

 2

 4

 6

 8

 10

 12

N
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

T
im

e
(s

e
c
)

k

RD-Core
RD-Bufly
TM-Core

TM-Bufly

(b) Google (𝑘 = 2)

0

10K

20K

30K

40K

50K

 1  2  3  4
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

N
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

T
im

e
(s

e
c
)

k

RD-Core
RD-Bufly
TM-Core

TM-Bufly

(c) Amazon (𝑞 = 15)

0

1K

2K

3K

4K

5K

6K

7K

 1  2  3  4
 0.7

 0.8

 0.9

 1

 1.1

N
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

T
im

e
(s

e
c
)

k

RD-Core
RD-Bufly
TM-Core

TM-Bufly

(d) Google (𝑞 = 15)

Fig. 5. Number of remaining vertices and time overhead incurred when employing graph reduction techniques.

of each algorithm on Amazon and Google datasets with varying values of 𝑘 and 𝑞. Results on

the other datasets are consistent. In this experiment, we omit the results of algorithm BPBnB as

they follow a similar trend to those of BPPivot. From Fig. 4, we note that the runtime of BPPivot
constantly outperforms those algorithms that do not incorporate the core-based reduction or the

butterfly-based reduction. Moreover, the runtime of BPPivot (with all graph reduction techniques)

can be several times faster than that of BPPivotC (only with the core-based graph reduction).

For instance, on Google, when 𝑘 = 4 and 𝑞 = 20, BPPivot only takes 63 seconds to complete

the computations, while BPPivotC requires more than 1000 seconds. These results confirm the

effectiveness of the graph reduction proposed in Sec. 4.1. Additionally, we observe that both BPEAN
and BPPivotN are inefficient in enumerating relatively large 𝑘-biplexes when no graph reduction

techniques are applied. This is due to the direct utilization of the original graphs as input, resulting

in the enumeration of numerous unnecessary maximal 𝑘-biplexes with small sizes. It is worth noting

that even equipped with our proposed butterfly-based reduction, the runtime of the state-of-the-art

algorithm (BPEAB) remains orders of magnitude less efficient than our proposed algorithm BPPivot
on most parameter settings. This is attributed to the remarkable performance of our pivot-based

branching rule in reducing unnecessary computations, further demonstrating the superiority of

the proposed pivoting techniques and graph reductions over existing solutions.

Exp-3: Efficiency of graph reduction techniques. In this experiment, we further evaluate the

efficiency of two graph reduction techniques. Here, we denote by RD-Core and RD-Bufly the

number of remaining vertices obtained by core-based reduction and butterfly-based reduction,

respectively, denote by TM-Core and TM-Bufly the time spend of core-based reduction and butterfly-

based reduction in processing bipartite graphs, respectively. Fig. 5 shows the detailed results

on Amazon and Google datasets, with varying the values of 𝑘 and 𝑞. As can be seen, RD-Bufly
significantly outperforms RD-Core in terms of vertex reduction. For instance, when 𝑘 = 2 and

𝑞 = 10 on the Amazon dataset, RD-Bufly yields fewer than 7500 remaining vertices, whereas

RD-Core retains at least 84000 vertices under the same parameter settings. We also note that the

pruning performance of RD-Bufly varies relative smoothly against a decrease in 𝑞 (or an increase in

𝑘) compared to that of RD-Core. Moreover, although the time spend of the butterfly-based reduction

(TM-Bufly) can higher than that of core-based reduction (TM-Core), TM-Bufly still consumes a

few seconds at most on most parameter settings. Nevertheless, we can observe that the runtime of

TM-Bufly is negligible on most parameter settings when comparing with that of BPPivot (based
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Fig. 6. Effects of ordering optimizations.
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Fig. 7. Effects of upper-bound techniques.

on the results shown in Fig. 4). These results demonstrate the excellent ability of the proposed

butterfly-based graph reduction technique in eliminating unnecessary vertices from the given

bipartite graph.

Exp-4: Results of ordering techniques. To evaluate the effectiveness of ordering techniques, we

introduce two additional algorithms BPBnBNO and BPPivotNO, where BPBnBNO and BPPivotNO
are the variants of our BPBnB and BPPivot algorithms, respectively, without utilizing ordering

optimizations. Fig. 6 presents the experimental results of these algorithms on Amazon and Google
with varying values of 𝑘 and 𝑞. As can be seen, the algorithms without ordering techniques exhibit

significantly lower performance compared to the algorithms with these techniques. For instance,

on Amazon, when 𝑘 = 2 and 𝑞 = 12, the algorithm BPPivot completes the computations in less

than 100 seconds, while BPPivotNO fails to terminate within 24 hours. Thus, the results highlight

the important impact of ordering techniques on the efficiency of the algorithms for enumerating

maximal 𝑘-biplexes. The effect stems from the fact that these techniques greatly reduce the search

space by dividing the original problem into a series of subproblems over small bipartite graphs,

thereby transforming it into a more manageable enumeration problem.

Exp-5: Results of upper-bound techniques. In this experiment, we evaluate the effectiveness

of the proposed upper-bound techniques. Fig. 7 displays the results of each algorithm on Amazon
and Google with varying values of 𝑘 and 𝑞, where the algorithms BPBnBNU and BPPivotNU are

the variants of our BPBnB and BPPivot algorithms, respectively, that do not utilize upper-bound

techniques. Similar trends are observed in the other datasets. As can be seen, each algorithm with

the upper-bound techniques consistently outperforms than the corresponding algorithm without

these techniques on all tested datasets with varying parameters. Moreover, as the size of 𝑘 increases,

the speedup of BPPivot (resp. BPBnB) compared to BPPivotNU (resp. BPBnBNU) also increases

in terms of runtime. Specifically, on Google, when 𝑘 = 3 and 𝑞 = 15, BPPivotNU takes less than

5 times as long as BPPivot, but this ratio increases to over 100 when 𝑘 is increased to 4. This

behavior can be attributed to the tightness of the proposed upper-bound technique, which allows

for a near-linear time computation. As a result, the proposed algorithms with the upper-bound

techniques exhibit excellent performance.

Exp-6: Scalability testing. To evaluate the scalability of our proposed algorithms, we randomly

sample 20-80% of vertices and edges from Amazon to generate 8 subgraphs. Subsequently, we test
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Fig. 8. Scalability testing for various algorithms.

the enumeration time of all algorithms on each subgraph, and the results are shown in Fig. 8. The

results on the other datasets are consistent. As can be seen, the runtime of our proposed algorithms,

BPBnB and BPPivot, increases smoothly as the sizes of bipartite graphs increase. Moreover, the

algorithm BPPivot consistently demonstrates the best performance on each subgraph over all

tested algorithms. More specifically, as the number of vertices or edges increases, the runtime of

our algorithm BPPivot remains significantly lower than the state-of-the-art algorithm BPEA. For
instance, when 𝑘 = 2 and 𝑞 = 10, BPPivot and BPEA respectively take 0.376, and 137 seconds to

complete the computation on the graph Amazon with 60% vertices. However, when increasing

to 80% vertices, BPPivot only requires 109 seconds, while BPEA takes more than 34,000 seconds.

These results demonstrate the superior scalability of our proposed algorithms in handling large

real-world bipartite graphs.

Exp-7: Memory usages of various algorithms. This experiment tests the memory usages of

various algorithms on each dataset. The experimental results are shown in Fig. 9. From this figure,

we can observe that the memory usages of all algorithms scales linearly with the size of the

bipartite graph. Moreover, we note that the memory usage of our algorithms BPBnB and BPPivot
is comparable to that of BPEA. This is expected since the worst-case space complexity of both our

algorithms and BPEA are bounded by 𝑂 (𝛿𝑛 +𝑚). Despite similar memory usage, our algorithms

demonstrate superior performance over BPEA when considering the results from Exp-1. Thus,

these findings indicate that our algorithms are space-efficient and capable of effectively handling

large real-world bipartite graphs.

6 RELATEDWORKS

Maximal biclique enumeration. Our work is related to the maximal biclique enumeration

problem which has been widely studied in the literature [1, 10, 16–18, 28, 32, 50]. Early approaches

to this problem relied on a breadth-first search to find the power set of 𝐿 (or 𝑅) [28, 32]. However,

such methods usually suffer from poor performance, prompting the development of depth-first

searchmethods in recent years [1, 10, 16, 18, 50]. Specifically, Zhang et al. [50] proposed an algorithm

to enumerate maximal bicliques from the vertex set with a smaller number of vertices, based on

the feature that all maximal bicliques can be identified by only detecting the subsets of the vertex

set 𝐿 (or 𝑅) only. Das et al. [18] observed that the performance can be improved by dividing the

original enumeration problem into a series of subproblems using an ordering technique. Abidi et al.

[1] developed a pivot-based algorithm, based on a dominating technique, to enumerate maximal

bicliques. Chen et al. [10] combined the ordering technique and the dominating technique to further

improve the efficiency of enumerating maximal bicliques. Recently, Dai et al. [16] presented a novel

pivot-based algorithm, which not only achieves the near-optimal worst-case time complexity but

also has the polynomial delay time complexity. However, all the above mentioned techniques are

mainly tailored to biclique enumeration. Extending such techniques to solve maximal 𝑘-biplex

enumeration problem is much less than our proposed algorithms as shown in our experiments.
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Cohesive subgraph mining on bipartite graphs In addition to the biclique [1, 10, 16, 18, 50]

and 𝑘-biplex [16, 38, 48, 49] models, many other cohesive subgraphs on bipartite graphs have

also been studied, including quasi-biclique [22, 33, 42], (𝑙, 𝑟 )-core [9, 31], 𝑘-bitruss [41, 52], and
others. All of these mentioned cohesive subgraph models can be regarded as relaxations of the

biclique model. The problem of mining quasi-bicliques was shown to be NP-hard [22, 42], while

mining (𝑙, 𝑟 )-core [9] and 𝑘-bitruss [41] can be achieved in polynomial time. Efficient enumeration

algorithms for mining quasi-bicliques have been developed by [42] and [22]. The notion of (𝑙, 𝑟 )-
core was originally proposed in [9]. The state-of-the-art algorithm for (𝑙, 𝑟 )-core computation is an

index-based algorithm presented in [31]. The concept of 𝑘-bitruss was first proposed by Zou [52].

Wang et al. [41] developed an efficient index-based algorithm to compute the 𝑘-bitruss. Since all

these models do not satisfy the hereditary property, all the solutions cannot extend to solve the

problem of enumerating maximal 𝑘-biplexes.

Maximal 𝑘-plex enumerations on traditional graphs. The 𝑘-plex model has been extensively

studied on traditional graphs [5, 13–15, 37, 43–45, 51], and it is highly relevant to the notion of

𝑘-biplex on bipartite graphs. The 𝑘-biplex model was first introduced in [37], and many advanced

approaches have been developed to enumerate all maximal 𝑘-plexes [5, 43–45, 51]. Since the time

cost of enumerating all maximal 𝑘-plexes is very high, many existing solutions turn to enumerate

maximal 𝑘-plexes with size no less than a threshold 𝑞 [14, 15, 43, 44, 51]. For instance, the algorithms

based on the clique and 𝑘-core reduction and the pivoting technique were developed by Conte et al.

[13, 14]. Recently, Zhou et al. [51] first developed a branch-and-bound algorithm with a non-trivial

worst-case time complexity. Dai et al. and Wang et al. [15, 44] further improved the efficiency of

enumerating maximal 𝑘-plexes while guaranteeing the similar time complexity as [51], respectively.

However, the structure of 𝑘-biplex on the bipartite graph is very different from that of 𝑘-plex on

traditional graphs, and thus it is quite non-trivial to extend existing 𝑘-plex enumeration techniques

for 𝑘-biplex enumeration.

7 CONCLUSION
In this paper, we study the problem of enumerating maximal 𝑘-biplexes on bipartite graphs. To

overcome the theoretical and practical inefficiencies of existing methods, we propose several novel

and efficient solutions. Specifically, we first propose two efficient enumeration algorithms based

on several newly-developed branching rules. We show that our best algorithm achieves a time

complexity of 𝑂 (𝑚𝛽𝑛
𝑘
) (𝛽𝑘 < 2), which represents the current state-of-the-art according to our

knowledge. Moreover, we also present several non-trivial optimization techniques, including graph

reduction, upper-bounds based pruning, and ordering-based optimization, to further improve

the efficiency of our algorithms. Finally, extensive experimental results on 5 real-world datasets

demonstrate the high efficiency and scalability of the proposed algorithms.
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